【CF932E】Team Work-二项式反演+第二类斯特林数

测试地址:Team Work
题目大意:给定 n,k n , k ,求 ni=1Cinik ∑ i = 1 n C n i ⋅ i k
做法:本题需要用到二项式反演+第二类斯特林数。
二项式反演的实质是容斥原理,有两种表示形式:
f(n)=ni=0(1)iCing(i) f ( n ) = ∑ i = 0 n ( − 1 ) i ⋅ C n i ⋅ g ( i ) g(n)=ni=0(1)iCinf(i) g ( n ) = ∑ i = 0 n ( − 1 ) i ⋅ C n i ⋅ f ( i ) 等价,或:
f(n)=ni=0Cing(i) f ( n ) = ∑ i = 0 n C n i ⋅ g ( i ) g(n)=ni=0(1)niCinf(i) g ( n ) = ∑ i = 0 n ( − 1 ) n − i ⋅ C n i ⋅ f ( i ) 等价。
证明待填坑,这里先不写了。
我们发现第二类斯特林数:
S(n,m)=1m!mi=0(1)iCim(mi)n S ( n , m ) = 1 m ! ∑ i = 0 m ( − 1 ) i ⋅ C m i ⋅ ( m − i ) n
后面的式子和二项式反演的第二种形式的右边非常相似,而且后面是一个幂函数,因此我们尝试用斯特林数凑出幂函数。
首先有:
m!S(n,m)=mi=0(1)iCim(mi)n m ! S ( n , m ) = ∑ i = 0 m ( − 1 ) i ⋅ C m i ⋅ ( m − i ) n
mi m − i 替换 i i ,得:
m!S(n,m)=i=0m(1)miCmiin
这样这个式子就跟上面的形式完全一样了,所以我们有:
mn=ni=0Cimi!S(n,i) m n = ∑ i = 0 n C m i ⋅ i ! ⋅ S ( n , i )
细心的同学可能发现我换了和式的上限,这是没有任何问题的,请大家自己证证看。(提示:从组合数和斯特林数有意义的数值区间考虑)
那么我们把这个结论带进要求的式子中去,得到:
ans=ni=1Cinik a n s = ∑ i = 1 n C n i ⋅ i k
=ni=0Cinkj=0Cjij!S(k,j) = ∑ i = 0 n C n i ∑ j = 0 k C i j ⋅ j ! ⋅ S ( k , j ) (这一步在 k=0 k = 0 时会多出一个 1 1 ,最后特判减去即可)
显然应该对换i,j的位置,得到:
ans=kj=0S(k,j)j!ni=0CinCji a n s = ∑ j = 0 k S ( k , j ) ⋅ j ! ∑ i = 0 n C n i C i j
从后面和式的组合意义考虑,这个式子表达的是,先从 n n 个里取i个,再从 i i 个里取j个的方案数。那么我们不如考虑每一个 j j 个元素构成的集合产生的贡献,因为i是任意取的,那么取其他 ij i − j 个元素的方案数,就等于 2nj 2 n − j 。所以有:
ans=kj=0S(k,j)j!Cjn2nj a n s = ∑ j = 0 k S ( k , j ) ⋅ j ! ⋅ C n j ⋅ 2 n − j
=kj=0S(k,j)n!(nj)!2nj = ∑ j = 0 k S ( k , j ) ⋅ n ! ( n − j ) ! ⋅ 2 n − j
于是我们 O(k2) O ( k 2 ) 预处理出第二类斯特林数,再 O(k) O ( k ) 算出上面的式子即可。
事实上,这道题目是一道更难题目的一小部分,那道题目我看不懂,所以暂时先做这道题。那道题目需要用到 k k 达到105的情况,实际上仍是可做的,因为:
S(k,j)=1j!ji=0(1)iCij(ji)k S ( k , j ) = 1 j ! ∑ i = 0 j ( − 1 ) i ⋅ C j i ⋅ ( j − i ) k
=ji=0(1)ii!(ji)k(ji)! = ∑ i = 0 j ( − 1 ) i i ! ⋅ ( j − i ) k ( j − i ) !
这是一个卷积的形式,可以用FFT/NTT做到 O(klogk) O ( k log ⁡ k ) 预处理斯特林数,但这道题 k k <script type="math/tex" id="MathJax-Element-8577">k</script>比较小,所以我就不这样写了。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
ll n,k,S[5010][5010]={0};

ll power(ll a,ll b)
{
    ll s=1,ss=a;
    while(b)
    {
        if (b&1) s=s*ss%mod;
        b>>=1;ss=ss*ss%mod;
    }
    return s;
}

int main()
{
    scanf("%lld%lld",&n,&k);

    S[0][0]=1;
    for(ll i=1;i<=k;i++)
        for(ll j=1;j<=i;j++)
            S[i][j]=(S[i-1][j-1]+j*S[i-1][j])%mod;

    ll s1=1,s2=power(2,n),inv=500000004,ans=0;
    for(ll i=0;i<=k;i++)
    {
        ans=(ans+S[k][i]*s1%mod*s2)%mod;
        s1=s1*(n-i)%mod;
        s2=s2*inv%mod;
    }
    if (k) printf("%lld",ans);
    else printf("%lld",(ans-1+mod)%mod);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值