[CF932E]Team Work

280 篇文章 1 订阅

题目

传送门 to luogu

思路

这玩意儿怎么天天考,问题是我还不会做!

重要等式 n m = ∑ i = 0 m ( n i ) × i ! × S ( m , i ) n^m=\sum_{i=0}^{m}{n\choose i}\times i!\times S(m,i) nm=i=0m(in)×i!×S(m,i)

其中 S ( m , i ) S(m,i) S(m,i) 表示 m m m 个不同的球放入 i i i 个相同的盒子(不能空盒)的方案数。

为啥这个东西比较带劲呢?其实就是为了搞出 ( n i ) {n\choose i} (in) 罢了。就可以和前面的组合数互相制约。

于是原题中的式子就可以写成

∑ i = 0 n ( n i ) ∑ j = 0 k ( i j ) × j ! × S ( k , j ) \sum_{i=0}^{n}{n\choose i}\sum_{j=0}^{k}{i\choose j}\times j!\times S(k,j) i=0n(in)j=0k(ji)×j!×S(k,j)

改变枚举顺序,就变成了

∑ j = 0 k j ! × S ( k , j ) ∑ i = 0 n ( n i ) ( i j ) \sum_{j=0}^{k}j!\times S(k,j)\sum_{i=0}^{n}{n\choose i}{i\choose j} j=0kj!×S(k,j)i=0n(in)(ji)

右边那个东西改写一下,得到

∑ j = 0 k j ! × S ( k , j ) ∑ i = 0 n ( n j ) ( n − j i − j ) \sum_{j=0}^{k}j!\times S(k,j)\sum_{i=0}^{n}{n\choose j}{n-j\choose i-j} j=0kj!×S(k,j)i=0n(jn)(ijnj)

如果把 ( n j ) {n\choose j} (jn) 拿出来,惊讶地发现右边就是一个 2 n − j 2^{n-j} 2nj 罢了!于是

a n s = ∑ j = 0 k j ! × S ( k , j ) × ( n j ) × 2 n − j ans=\sum_{j=0}^{k}j!\times S(k,j)\times{n\choose j}\times 2^{n-j} ans=j=0kj!×S(k,j)×(jn)×2nj

话说 j ! × S ( k , j ) j!\times S(k,j) j!×S(k,j) 也可以直接重新定义,即 k k k 个球、 j j j 个不同的盒子,不能空盒。

我们的枚举复杂度是 O ( k ) \mathcal O(k) O(k) 的,不可思议!不过算 S S S O ( k 2 ) \mathcal O(k^2) O(k2) 的递推。

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void writeint(int x){
	if(x > 9) writeint(x/10);
	putchar((x%10)^48);
}
int qkpow(int_ b,int q,int Mod){
	int ans = 1;
	for(; q; q>>=1,b=b*b%Mod)
		if(q&1) ans = ans*b%Mod;
	return ans;
}

const int Mod = 1e9+7;
const int inv2 = (Mod+1)>>1;
const int MaxN = 5005;
int S[MaxN], inv[MaxN];

int main(){
	int n = readint(), k = readint();
	S[1] = 1; // 毕竟不能空盒
	for(int i=2; i<=k; ++i)
	for(int j=i; j>=1; --j)
		S[j] = (0ll+S[j]+S[j-1])*j%Mod;
	inv[1] = 1;
	for(int i=2; i<=k; ++i)
		inv[i] = (0ll+Mod-Mod/i)
			*inv[Mod%i]%Mod;
	int t = qkpow(2,n,Mod), ans = 0;
	for(int i=0; i<=k; ++i){
		ans = (ans+1ll*S[i]*t)%Mod;
		t = 1ll*t*inv2%Mod
			*(n-i)%Mod
			*inv[i+1]%Mod;
	}
	printf("%d\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值