【BZOJ2820】YY的GCD-莫比乌斯反演+数论分块+分类讨论

测试地址:YY的GCD
题目大意: p=primeni=1mj=1[gcd(i,j)=p] ∑ p = p r i m e ∑ i = 1 n ∑ j = 1 m [ gcd ( i , j ) = p ] T(104) T ( ≤ 10 4 ) 组询问, n,m107 n , m ≤ 10 7
做法:本题需要用到莫比乌斯反演+数论分块+分类讨论。
首先按照套路推式子(不妨设 nm n ≤ m ):
ans=p=primeni=1mj=1[gcd(i,j)=p] a n s = ∑ p = p r i m e ∑ i = 1 n ∑ j = 1 m [ gcd ( i , j ) = p ]
=p=primen/pi=1m/pj=1[gcd(i,j)=1] = ∑ p = p r i m e ∑ i = 1 n / p ∑ j = 1 m / p [ gcd ( i , j ) = 1 ]
=p=primen/pi=1m/pj=1d|i,d|jμ(d) = ∑ p = p r i m e ∑ i = 1 n / p ∑ j = 1 m / p ∑ d | i , d | j μ ( d )
=p=primen/pd=1μ(d)npdmpd = ∑ p = p r i m e ∑ d = 1 n / p μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋
k=pd k = p d ,有:
ans=p=primep|kμ(kp)nkmk a n s = ∑ p = p r i m e ∑ p | k μ ( k p ) ⌊ n k ⌋ ⌊ m k ⌋
互换 p,k p , k 的位置,有:
ans=nk=1nkmkp=primeμ(kp) a n s = ∑ k = 1 n ⌊ n k ⌋ ⌊ m k ⌋ ∑ p = p r i m e μ ( k p )
这是一个数论分块的形式,如果我们能预处理出 g(k)=p=primeμ(kp) g ( k ) = ∑ p = p r i m e μ ( k p ) ,我们就可以以 O(Tn) O ( T n ) 的复杂度完成本题了。
直接枚举是 O(nlogn) O ( n log ⁡ n ) 的,无法承受,而 g g 显然并不是一个积性函数,这是不是就意味着我们无法用线性筛求了呢?不是的,只是我们需要进一步探求g的性质。
k=p0x k = p 0 x ,其中 p0 p 0 k k 的最小质因子,我们尝试用和x有关的式子 O(1) O ( 1 ) 算出 g(k) g ( k )
情况一: p0|x p 0 | x 时,考虑在 g(k) g ( k ) 式子中枚举的 p p
p0=p时,显然 μ(kp)=μ(x) μ ( k p ) = μ ( x )
p0p p 0 ≠ p 时, kp k p 包含因数 p20 p 0 2 ,所以 μ(kp)=0 μ ( k p ) = 0
综上所述, g(k)=μ(x) g ( k ) = μ ( x )
情况二: p0x p 0 ∤ x 时,考虑在 g(k) g ( k ) 式子中枚举的 p p
p0=p时,显然 μ(kp)=μ(x) μ ( k p ) = μ ( x )
p0p p 0 ≠ p 时,因为 p0 p 0 是质数,且 p0x p 0 ∤ x ,所以 p0 p 0 x x 互质,那么p0 xp x p 显然也互质。又因为 μ μ 是积性函数,所以 μ(kp)=μ(p0)μ(xp) μ ( k p ) = μ ( p 0 ) ⋅ μ ( x p ) 。将 μ(p0) μ ( p 0 ) 提出和式后,发现剩下的就是 g(x) g ( x ) 的表达式。
综上所述, g(k)=μ(x)g(x) g ( k ) = μ ( x ) − g ( x )
于是我们就可以用线性筛 O(n) O ( n ) 求出 g g <script type="math/tex" id="MathJax-Element-9677">g</script>了,这样我们就解决了这一题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int T,prime[10000010];
ll mxn=0,n[10010],m[10010];
ll mu[10000010],g[10000010];
bool vis[10000010]={0};

void calc(int n)
{
    mu[1]=1,g[1]=0;
    prime[0]=0;
    for(int i=2;i<=n;i++)
    {
        if (!vis[i])
        {
            prime[++prime[0]]=i;
            mu[i]=-1;
            g[i]=1;
        }
        for(int j=1;j<=prime[0]&&i*prime[j]<=n;j++)
        {
            vis[i*prime[j]]=1;
            if (i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                g[i*prime[j]]=mu[i];
                break;
            }
            mu[i*prime[j]]=-mu[i];
            g[i*prime[j]]=mu[i]-g[i];
        }
    }
    for(int i=1;i<=n;i++)
        g[i]+=g[i-1];
}

int main()
{
    scanf("%d",&T);
    for(int i=1;i<=T;i++)
    {
        scanf("%lld%lld",&n[i],&m[i]); 
        if (n[i]>m[i]) swap(n[i],m[i]);
        mxn=max(mxn,n[i]);
    }

    calc(mxn);

    for(int i=1;i<=T;i++)
    {
        ll ans=0;
        for(ll j=n[i];j;j=max(n[i]/(n[i]/j+1),m[i]/(m[i]/j+1)))
        {
            ll l=max(n[i]/(n[i]/j+1),m[i]/(m[i]/j+1)),r=j;
            ans+=(n[i]/j)*(m[i]/j)*(g[r]-g[l]);
        }
        printf("%lld\n",ans);
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值