【BZOJ3994】约数个数和(SDOI2015)-莫比乌斯反演+数论分块

测试地址:约数个数和
做法:本题需要用到莫比乌斯反演+数论分块。
首先,因为 ij i j 的每个因数都可以唯一表示成 pjq p j q 的形式,其中 p|i,q|j,gcd(p,q)=1 p | i , q | j , gcd ( p , q ) = 1 ,所以有:
d(ij)=x|iy|j[gcd(x,y)=1] d ( i j ) = ∑ x | i ∑ y | j [ gcd ( x , y ) = 1 ]
把这个式子带进原式中去,有:
ans=ni=1mj=1x|iy|j[gcd(x,y)=1] a n s = ∑ i = 1 n ∑ j = 1 m ∑ x | i ∑ y | j [ gcd ( x , y ) = 1 ]
x,y x , y 换出来,得到:
ans=nx=1my=1[gcd(x,y)=1]nxmy a n s = ∑ x = 1 n ∑ y = 1 m [ gcd ( x , y ) = 1 ] ⌊ n x ⌋ ⌊ m y ⌋
由莫比乌斯反演定理,有 d|nμ(d)=[n=1] ∑ d | n μ ( d ) = [ n = 1 ] (可以从狄利克雷卷积的形式来理解,因为 I=Ie I = I ∗ e ,所以有 e=μI e = μ ∗ I ),所以:
ans=nx=1nxmy=1myd|gcd(x,y)μ(d) a n s = ∑ x = 1 n ⌊ n x ⌋ ∑ y = 1 m ⌊ m y ⌋ ∑ d | gcd ( x , y ) μ ( d )
d d 换出来,得到:
ans=d=1min(n,m)μ(d)x=1ndnxdy=1mdmyd
我们知道 nxy=nxy ⌊ n x y ⌋ = ⌊ ⌊ n x ⌋ y ⌋ ,简单证明如下:
nxy=k ⌊ n x y ⌋ = k ,则有 n=k(xy)+r n = k ( x y ) + r ,其中 0r<xy 0 ≤ r < x y ,又令 r=r0x+r1 r = r 0 x + r 1 ,其中 0r1<x 0 ≤ r 1 < x ,可以知道 0r0<y 0 ≤ r 0 < y ,那么有 nx=ky+r0 ⌊ n x ⌋ = k y + r 0 ,所以 nxy=k ⌊ ⌊ n x ⌋ y ⌋ = k
所以上式可以写成:
ans=min(n,m)d=1μ(d)ndx=1ndxmdy=1mdy a n s = ∑ d = 1 min ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ⌊ ⌊ n d ⌋ x ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ ⌊ m d ⌋ y ⌋
那么我们只需预处理出 μ μ 的前缀和,以及找到计算后面那一串东西的快速方法,就可以数论分块了。令 S(n)=ni=1ni S ( n ) = ∑ i = 1 n ⌊ n i ⌋ ,那么上式可以写成:
ans=min(n,m)d=1μ(d)S(nd)S(md) a n s = ∑ d = 1 min ( n , m ) μ ( d ) S ( ⌊ n d ⌋ ) S ( ⌊ m d ⌋ )
我们又知道 S(n)=ni=1d(i) S ( n ) = ∑ i = 1 n d ( i ) ,为什么呢?因为看 S S 的第一种表示,实际上是枚举一个数,这个数对答案做出它的倍数个数的贡献,那么就可以换乘枚举每个数,这个数对答案做出它的因数个数的贡献,所以两种表示是等价的。那么显然我们可以线性筛出d来预处理 S S ,那么这个问题就解决了。
于是采用数论分块算ans,时间复杂度为 O(Tn) O ( T n )
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int T;
ll n[50010],m[50010],maxn=0;
ll prime[50010],mu[50010],summu[50010];
ll id[50010],d[50010],sumd[50010];
bool vis[50010]={0};

void calc(ll limit)
{
    mu[1]=d[1]=1;
    prime[0]=0;
    for(ll i=2;i<=limit;i++)
    {
        if (!vis[i])
        {
            prime[++prime[0]]=i;
            mu[i]=-1;
            id[i]=2;
            d[i]=2;
        }
        for(ll j=1;j<=prime[0]&&i*prime[j]<=limit;j++)
        {
            vis[i*prime[j]]=1;
            if (i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                id[i*prime[j]]=id[i]+1;
                d[i*prime[j]]=d[i]*(id[i]+1ll)/id[i];
                break;
            }
            mu[i*prime[j]]=-mu[i];
            id[i*prime[j]]=2;
            d[i*prime[j]]=d[i]*id[i*prime[j]];
        }
    }
    summu[0]=sumd[0]=0;
    for(ll i=1;i<=limit;i++)
    {
        summu[i]=summu[i-1]+mu[i];
        sumd[i]=sumd[i-1]+d[i];
    }
}

ll solve(ll n,ll m)
{
    ll ans=0;
    for(ll i=min(n,m);i>=1;i=max(n/(n/i+1),m/(m/i+1)))
    {
        ll l=max(n/(n/i+1),m/(m/i+1))+1,r=i;
        ans+=(summu[r]-summu[l-1])*sumd[n/i]*sumd[m/i];
    }
    return ans;
}

int main()
{
    scanf("%d",&T);
    for(int i=1;i<=T;i++)
    {
        scanf("%lld%lld",&n[i],&m[i]);
        maxn=max(maxn,max(n[i],m[i]));
    }

    calc(maxn);
    for(int i=1;i<=T;i++)
        printf("%lld\n",solve(n[i],m[i]));

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值