【BZOJ2159】Crash的文明世界-第二类斯特林数+树形DP

测试地址:Crash的文明世界
做法:本题需要用到第二类斯特林数+树形DP。
直接算式子的话,没办法拆开用其它方式算贡献,所以肯定要把这个式子拆开。
根据第二类斯特林数的性质,有:
nk=ki=0S(k,i)i!Cin n k = ∑ i = 0 k S ( k , i ) ⋅ i ! ⋅ C n i
其中 S(k,i) S ( k , i ) 为第二类斯特林数。
于是我们就能把题目中要求的式子拆成:
S(i)=nj=1kp=0S(k,p)p!Cpdist(i,j) S ( i ) = ∑ j = 1 n ∑ p = 0 k S ( k , p ) ⋅ p ! ⋅ C d i s t ( i , j ) p
=kp=0S(k,p)p!nj=1Cpdist(i,j) = ∑ p = 0 k S ( k , p ) ⋅ p ! ⋅ ∑ j = 1 n C d i s t ( i , j ) p
于是我们只要求出 f(i,p)=nj=1Cpdist(i,j) f ( i , p ) = ∑ j = 1 n C d i s t ( i , j ) p ,我们就能 O(nk) O ( n k ) 求出所有的 S(i) S ( i ) 了。
我们发现组合数有一个优美的性质: Cmn=Cm1n1+Cmn1 C n m = C n − 1 m − 1 + C n − 1 m 。因为儿子子树中所有的点与当前点的距离,恰好比它们到该儿子的距离多 1 1 ,所以我们可以树形DP求down(i,p),表示在点 i i 子树中的点j f(i,p) f ( i , p ) 的总贡献,这样就可以直接用儿子的信息算出当前点的信息了。而对于其它的点,我们也利用组合数的性质,自上而下求一个 up(i,p) u p ( i , p ) 即可。状态转移方程比较复杂,详见代码。
于是,树形DP的复杂度是 O(nk) O ( n k ) 的,而预处理斯特林数是 O(k2) O ( k 2 ) 的,所以能通过此题。
用long long常数大一些,会过不了,改成用int即可。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
const int mod=10007;
int n,k,first[50010]={0},tot=0;
int S[160][160]={0},fac[160],down[50010][160]={0},up[50010][160]={0};
struct edge
{
    int v,next;
}e[100010];

void insert(int a,int b)
{
    e[++tot].v=b;
    e[tot].next=first[a];
    first[a]=tot;
}

void init()
{
    int i,now,l,A,B,Q,tmp;

    scanf("%d%d%d",&n,&k,&l);
    scanf("%d%d%d%d",&now,&A,&B,&Q);
    for(i=1;i<n;i++)
    {
        now=(now*A+B)%Q;
        tmp=(i<l)?i:l;
        insert(i-now%tmp,i+1);
        insert(i+1,i-now%tmp);
    }
    /*
    scanf("%d%d",&n,&k);
    for(int i=1;i<n;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        insert(a,b),insert(b,a);
    }
    */
    S[0][0]=1;
    for(int i=1;i<=k;i++)
        for(int j=1;j<=i;j++)
            S[i][j]=(S[i-1][j-1]+j*S[i-1][j])%mod;
    fac[0]=1;
    for(int i=1;i<=k;i++)
        fac[i]=fac[i-1]*i%mod;
}

void calc_down(int v,int fa)
{
    down[v][0]=1;
    for(int i=first[v];i;i=e[i].next)
        if (e[i].v!=fa)
        {
            calc_down(e[i].v,v);
            down[v][0]=(down[v][0]+down[e[i].v][0])%mod;
        }
    for(int i=1;i<=k;i++)
        for(int j=first[v];j;j=e[j].next)
            if (e[j].v!=fa)
                down[v][i]=(down[v][i]+down[e[j].v][i]+down[e[j].v][i-1])%mod;
}

void calc_up(int v,int fa)
{
    up[v][0]=(n-down[v][0]+1)%mod;
    if (v>1)
    {
        for(int i=1;i<=k;i++)
        {
            up[v][i]=(up[fa][i]+up[fa][i-1])%mod;
            up[v][i]=((up[v][i]+down[fa][i]-down[v][i]-down[v][i-1])%mod+mod)%mod;
            up[v][i]=((up[v][i]+down[fa][i-1]-down[v][i-1])%mod+mod)%mod;
            if (i>1) up[v][i]=(up[v][i]-down[v][i-2]+mod)%mod;
            else up[v][i]=(up[v][i]-1+mod)%mod;
        }
    }
    for(int i=first[v];i;i=e[i].next)
        if (e[i].v!=fa) calc_up(e[i].v,v);
}

void solve()
{
    for(int i=1;i<=n;i++)
    {
        int ans=0;
        for(int j=1;j<=k;j++)
            ans=(ans+S[k][j]*fac[j]%mod*(down[i][j]+up[i][j]))%mod;
        printf("%d\n",ans);
    }
}

int main()
{
    init();
    calc_down(1,0);
    calc_up(1,0);
    solve();

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值