题目
1.1 Description
送你一个n 个点m 条边的DAG 和参数k, 定义一条经过l 条边的路径的权值为l^k.
对于i=1…n, 求出所有1 到i 的路径的权值之和, 对998244353 取模.
1.2 Input Format
第一行三个整数n; m; k, 分别表示DAG 的点数, 边数和参数.
接下来m 行, 每行两个整数ui; vi, 表示一条从ui 到vi 的有向边.
1.3 Output Format
共输出n 行, 第i 行一个整数, 表示i 号点的答案.
1.4 Sample
1.4.1 Input
6 8 2
1 2
1 3
1 5
2 4
3 2
3 4
3 6
4 6
1.4.2 Output
0
5
1
17
1
38
1.5 Constraints
对于前20% 的数据, n 2000;m 5000;
对于另10% 的数据, k = 1;
对于另20% 的数据, k =30;
对于100% 的数据, 1 n 100000; 1 m 200000; 0 k 500, 保证从1 出发可以到达每
个点, 可能会有重边.
题解
发现k的值比较小,那么不妨设f[i][x]表示到第i个点所有路径的x次方的和,使用二项式定理可以搞到nk2nk2
但是现在要搞到nk
f[i][x]=∑len(i)xf[i][x]=∑len(i)x
这里需要使用第二类斯特林树
第二类斯特林树表示的是把n个有特征的球放入m个没有特征的盒子的方案数(每一个盒子里面都至少有一个球),一般也可以用{
nmmn}或s[n][m]来表示
考虑一下