【BZOJ2658】小蓝的好友(ZJOI2012)-扫描线+Treap

测试地址:小蓝的好友
做法:本题需要用到扫描线+Treap。
首先,很快想到补集转化,用总的子矩形数( n(n+1)2m(m+1)2 n ( n + 1 ) 2 ⋅ m ( m + 1 ) 2 )减去不包含任何资源点的子矩形数计算答案。
考虑自上而下用扫描线,每次计算下边界在某一行的,不包含任何资源点的子矩形数目。考虑上边界所在的行,这一行能选为上边界的区间数目与这一行与下面的行的资源点有关,每个资源点会将上面的每一行的某些区间划分成两个部分。于是想到维护每一列最低的资源点位置,然后每个点向分裂成的两个新区间内的最低点连边,形成一棵二叉树。我们发现,在这棵二叉树中,DFS序就是列的顺序,而父亲的高度总比儿子的高度要低,这就是一棵Treap(好像又称笛卡尔树)了。
考虑有了这棵Treap,如何计算可以作为上边界的区间数目。因为DFS序就是列的顺序,所以一棵子树就表示一个区间,而子树的根是高度最低的资源点,以它父亲为根的子树是一个新的区间,我们发现这棵子树的根可以代表一个小矩形,表示父亲分裂的行开始向上,到这个根分裂之前的行,这棵子树所代表的整个区间的所有列组成的小矩形,显然这个小矩形内任意一个区间都可以作为上界。而这样我们就可以根据整个Treap每个点的高度,子树大小等信息,不重复地统计出当前行的答案了。
接下来考虑新的一行,首先所有点的高度都 +1 + 1 ,因为我们计算信息时实际上用的是高度的差,于是我们开一个空点作为整棵Treap根的父亲,当进行这个操作时,只要将空点的高度
1 − 1 即可。然后是新增一个资源点,实际上就是把某一列的高度弄到和空点的高度相同,只需一路转上去,顺便维护信息即可。注意修改一个点时,这个点以及它儿子的信息都会改变。因为资源点的位置随机,所以Treap的平均深度是 O(logn) O ( log ⁡ n ) 的,所以总的时间复杂度为 O(nlogn) O ( n log ⁡ n ) ,可以通过此题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,ch[40010][2]={0},pre[40010];
ll r,c,h[40010]={0},ans,tot,siz[40010]={0};
struct point
{
    ll x,y;
}p[100010];

bool cmp(point a,point b)
{
    return a.x<b.x;
}

void buildtree(int l,int r,int fa,int type)
{
    if (l>r) return;
    int mid=(l+r)>>1;
    pre[mid]=fa;
    ch[fa][type]=mid;
    if (l==r) {siz[mid]=1;return;}
    buildtree(l,mid-1,mid,0);
    buildtree(mid+1,r,mid,1);
    siz[mid]=siz[ch[mid][0]]+siz[ch[mid][1]]+1;
}

void update(int v,ll type)
{
    tot+=type*siz[v]*(siz[v]+1ll)/2ll*(h[v]-h[pre[v]]);
}

void modify(int x,ll newh)
{
    update(x,-1ll);
    if (ch[x][0]) update(ch[x][0],-1ll);
    if (ch[x][1]) update(ch[x][1],-1ll);
    h[x]=newh;
    update(x,1ll);
    if (ch[x][0]) update(ch[x][0],1ll);
    if (ch[x][1]) update(ch[x][1],1ll);

    while(pre[x])
    {
        int y=pre[x];
        bool f=(ch[y][0]==x);
        if (ch[x][f]) update(ch[x][f],-1ll);
        update(x,-1ll);
        update(y,-1ll);

        ch[y][!f]=ch[x][f];
        pre[ch[x][f]]=y;
        ch[x][f]=y;
        ch[pre[y]][ch[pre[y]][1]==y]=x;
        pre[x]=pre[y];
        pre[y]=x;

        siz[y]=siz[ch[y][0]]+siz[ch[y][1]]+1;
        siz[x]=siz[ch[x][0]]+siz[ch[x][1]]+1;
        if (ch[y][!f]) update(ch[y][!f],1ll);
        update(x,1ll);
        update(y,1ll);
    }
}

int main()
{
    scanf("%lld%lld%d",&r,&c,&n);
    for(int i=1;i<=n;i++)
        scanf("%lld%lld",&p[i].x,&p[i].y);
    sort(p+1,p+n+1,cmp);

    buildtree(1,c,0,1);
    ans=0,tot=0;
    int now=1;
    for(int i=1;i<=r;i++)
    {
        if (ch[0][0]) update(ch[0][0],-1ll);
        if (ch[0][1]) update(ch[0][1],-1ll);
        h[0]--;
        if (ch[0][0]) update(ch[0][0],1ll);
        if (ch[0][1]) update(ch[0][1],1ll);

        while(now<=n&&p[now].x==i)
        {
            modify(p[now].y,h[0]);
            now++;
        }
        ans+=tot;
    }
    printf("%lld",r*(r+1ll)/2ll*c*(c+1ll)/2ll-ans);

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值