D
二分,贪心
给 n n n种东西的个数,要求每组都包含 k k k个种类的的元素,问最多能分多少组?
k = 1 e 12 k=1e12 k=1e12,显然二分。但是 c h e c k check check有点难想。首先假设当前二分的组数是 m m m,那一个种类的东西,最多给 m m m个,分别分布在 m m m组,再多就要有两个该种类的东西分配到同一组了,不符合要求。如果一个种类的个数 x < m x<m x<m,那这 x x x个也可以全部拿来用,把他们放在 x x x个不同组就可以了。所以每个种类的东西可以贡献 m i n ( m , a i ) min(m,a_i) min(m,ai),最后看总数是否达到 m ∗ k m*k m∗k就行了
void solve(void){
int n,k;
cin>>n>>k;
vi a(n+1);
rep(i,1,n){
cin>>a[i];
}
int l=0,r=1e18;
auto check=[&](int x)->bool{
int sum=0;
rep(i,1,n){
sum+=min(a[i],x);
}
return sum/x>=k;
};
while(l<=r){
int m=l+r>>1;
if(check(m))l=m+1;
else r=m-1;
}
cout<<r;
}
E
dp状态设计
给一个只含三种字符的字符串,每次操作可以交换两个相邻字符,问操作不超过 k k k次可以得到的不同字符个数?
n = 30 n=30 n=30,因此可以考虑大胆一点的状态设计。首先注意到操作次数超过 n 2 / 2 n^2/2 n2/2次就变成任意字符,所以操作次数肯定不会超过 O ( n 2 ) O(n^2) O(n2),那么对于操作次数不超过 k k k的这个约束,我们可以把操作次数加入状态。
接下来的问题是怎么维护,操作一定次数得到的新串个数这个问题。首先从原串操作得到新串不好想,可以考虑等价问题:哪些串操作一定次数可以得到原串。
那我们可以把当前前缀分别已经选择了多少个 K , E , Y K,E,Y K,E,Y记录在状态里,然后假设下一个选 K K K,那么从当前最后一个 K K K,到下一个 K K K之间的 E , Y E,Y E,Y都要交换,举例来说就是 K E Y K − > K K E Y KEYK->KKEY KEYK−>KKEY,想把第二个 K K K作为当前的新加入的字符,需要把它移动到末尾,那么路途上经过的 E , Y E,Y E,Y都需要一次交换,类似于冒泡排序的过程。
因此状态转移就是
d
p
(
i
+
1
,
j
,
k
,
d
+
c
o
s
t
)
+
=
d
p
(
i
,
j
,
k
,
d
)
dp(i+1,j,k,d+cost)+=dp(i,j,k,d)
dp(i+1,j,k,d+cost)+=dp(i,j,k,d)
i
,
j
,
k
分别表示三种字符目前的个数,
d
表示目前的操作次数
i,j,k分别表示三种字符目前的个数,d表示目前的操作次数
i,j,k分别表示三种字符目前的个数,d表示目前的操作次数
c
o
s
t
就是到下一个
K
之间的
E
Y
个数
cost就是到下一个K之间的EY个数
cost就是到下一个K之间的EY个数
如果新加入的是 E Y EY EY也同理。这里需要维护三种字符出现次数的前缀和,用于计算区间内字符个数,以及一个下标数组,用于查找下一个字符的下标
最后 k k k可能很大,但根据前面的分析,实际上交换次数不会超过 O ( n 2 ) O(n^2) O(n2),因此只用累加操作次数不超过 n 2 n^2 n2的答案
int dp[N][N][N][N*N];
void solve(void){
string s;
cin>>s;
int n=s.size();
s=' '+s;
int k;
cin>>k;
vvi sum(3,vi(n+1));
vvi pos(3);
rep(i,1,n){
if(s[i]=='K')sum[0][i]++,pos[0].push_back(i);
else if(s[i]=='E')sum[1][i]++,pos[1].push_back(i);
else sum[2][i]++,pos[2].push_back(i);
rep(j,0,2){
sum[j][i]+=sum[j][i-1];
}
}
dp[0][0][0][0]=1;
rep(a,0,pos[0].size()){
rep(b,0,pos[1].size()){
rep(c,0,pos[2].size()){
rep(d,0,900){
if(a<pos[0].size()){
int p=pos[0][a];
int cnt=max(0ll,sum[1][p]-b)+max(0ll,sum[2][p]-c);
dp[a+1][b][c][d+cnt]+=dp[a][b][c][d];
}
if(b<pos[1].size()){
int p=pos[1][b];
int cnt=max(0ll,sum[0][p]-a)+max(0ll,sum[2][p]-c);
dp[a][b+1][c][d+cnt]+=dp[a][b][c][d];
}
if(c<pos[2].size()){
int p=pos[2][c];
int cnt=max(0ll,sum[0][p]-a)+max(0ll,sum[1][p]-b);
dp[a][b][c+1][d+cnt]+=dp[a][b][c][d];
}
}
}
}
}
int ans=0;
rep(i,0,min(k,900ll)){
ans+=dp[pos[0].size()][pos[1].size()][pos[2].size()][i];
}
cout<<ans;
}
F
枚举,dp
网格图只能往下往右走,一条路径的价值是路径中前k大的权值和,问路径最小价值?
网格图dp很简单,但这个前k大不好处理,我们不可能在dp过程中,维护到达当前点的所有方案的前k大元素。
注意到 n = 30 n=30 n=30很小,那么既然这个前k大不好处理,我们可以枚举第k大的值,这样走网格图的时候大于这个值的就必须选中,小于的就不选中,等于的可选可不选。然后要求是前k大的权值和,那最多选k个,dp数组增加一个维度记录已经选了几个。
这类似一个背包。每个东西的代价是1,选k个,问最小价值和。不同点在于背包每个东西都可选,我们可以以任意顺序遍历所有东西进行转移。但在网格图上我们只能在一条连续路径里选一些东西。
枚举第k大的值时,显然第k大肯定是网格图里已有的某个权值,枚举网格图中的元素即可。最后复杂度 O ( n 5 ) O(n^5) O(n5),其实 n = 30 n=30 n=30也提示了这个复杂度和做法
void solve(void){
int n,m,k;
cin>>n>>m>>k;
vvi a(n+1,vi(m+1));
rep(i,1,n){
rep(j,1,m){
cin>>a[i][j];
}
}
auto cal=[&](int x)->int{
vector<vvi>dp(n+1,vvi(m+1,vi(k+1,1e18)));
dp[0][0][0]=dp[1][0][0]=dp[0][1][0]=0;
rep(i,1,n){
rep(j,1,m){
if(a[i][j]>=x){
rep(l,1,k){
dp[i][j][l]=min(dp[i-1][j][l-1],dp[i][j-1][l-1])+a[i][j];
}
}
if(a[i][j]<=x){
rep(l,0,k){
dp[i][j][l]=min({dp[i][j][l],dp[i-1][j][l],dp[i][j-1][l]});
}
}
}
}
return dp[n][m][k];
};
int ans=1e18;
rep(i,1,n){
rep(j,1,m){
ans=min(ans,cal(a[i][j]));
}
}
cout<<ans;
}