简述PageRank算法原理(pagerank基本思想,终止点问题,陷阱问题,Spark Graphx调用pagerank API)

本文介绍了PageRank算法的基本概念,包括其衡量网页重要性的思想,以及在实际应用中遇到的终止点问题和陷阱问题。通过Spark GraphX调用pagerank API,展示了算法在处理这些问题上的改进。此外,还讨论了PR值的决定因素和提升PR值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考自:https://www.jianshu.com/p/7485cac02e95

一.PageRank基本概念

1.什么是pagerank?

PageRank对网页排名的算法,曾是Google发家致富的法宝。PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序。

PageRank用于评估网页链接的质量数量,以确定该网页的重要性和权威性的相对分数,范围为0到10
从本质上讲,PageRank是找出图中顶点(网页链接)的重要性

2.pagerank基本思想

被用户访问越多的网页更可能质量越高,而用户在浏览网页时主要通过超链接进行页面跳转,因此需要通过分析超链接组成的拓扑机构来推算每个网页被访问频率的高低。

二.PageRank算法

1.基本原理

(1)将每个网页抽象成一个节点

(2)如果页面A有链接直接链向B,则存在一条有向边从A到B(多个相同链接不重复计算边)

(3)因此整个web被抽象为一张有向图。

(4)假设有四张网页:A,B,C,D

​ 假设当一个用户停留在某一页面时,跳转到页面的每个被链接页面的概率相同。

在这里插入图片描述

由图可知,这个图是强连通的(即从任一节点出发可以到达另外任何一个节点)

(5)使用数据结构表示页面直接的关系

  • 例如,A页面链向B,C,D,所以从A跳转到B,C,D的概率各为1/3.

  • 设一共有N个网页,则可以组织成一个N维矩阵,其中第i行j列的值表示用户从页面j转到页面i的概率,这样的一个矩阵叫做转移矩阵(Transition Matrix)

  • 则上图可以用如下转移矩阵进行表示
    M = [ 0 1 / 2 0 1 / 2 1 / 3 0 0 1 / 2 1 / 3 1 / 2 0 0 1 / 3 0 1 0 ] (1) M= \begin{bmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 1/2 & 0 &0 \\ 1/3 & 0 & 1 &0 \end{bmatrix} \tag{1} M=01/31/31/31/201/2000011/21/200(1)
    M第一行为A、B、C和D转移到页面A的概率

    M第二行为A、B、C和D转移到页面B的概率

    M第三行为A、B、C和D转移到页面C的概率

    M第四行为A、B、C和D转移到页面D的概率

v = [ 1 / 4 1 / 4 1 / 4 1 / 4 ] (2) v= \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} \tag{2} v=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值