McDonnell_Douglas的博客

你们不要老想着搞个大新闻然后把评测姬批判一番。

C++——NOIP提高组——转圈游戏

转圈游戏

题目描述

n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从 0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。 

游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第 n−m 号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第 m-1 号位置。 

现在,一共进行了 10轮,请问 x 号小伙伴最后走到了第几号位置。

输入格式

输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。

输出格式

输出共 1 行,包含 1 个整数,表示 10轮后 x 号小伙伴所在的位置编号。

样例数据 1

输入

10 3 4 5

输出

5

备注

【数据说明】 
对于 30% 的数据,0<k<7; 
对于 80% 的数据,0<k<107; 
对于 100% 的数据,1<n<1,000,000 ;0<m<n ;0≤x<n ;0<k<109


解题报告:

根据题目,答案是
(x+10km) mod n,
=(x+m(10k mod n)  mod n) mod n,
= (x % n + (m % n) *(10k %n )% n) % n;
设 fastPow(10, k, n) =10k %n
则答案是:(x % n + (m % n) * fastPow(10, k, n) % n) % n;

所以只需要求出10k mod n即可,可以使用快速幂来求解,复杂度O(log2k)。

#include<iostream>
#include<cstdio>
using namespace std;
long long n,m,k,x;
int ksm(long long a,long long b,long long c)
{
	long long d=1;
	a%=c;
	while(b>0)
	{
		if(b%2==1)
		    d=(d*a)%c;
		b=b/2;
		a=(a*a)%c;
	}
	return d;
}
int main()
{
	cin>>n>>m>>k>>x;
	k=ksm(10,k,n*m);
	k*=m;
	x+=k;
	cout<<x%n<<endl;
	return 0;
}


阅读更多
版权声明:我的这些烂文章还有版权这种说法嚒?不存在的啦。 https://blog.csdn.net/McDonnell_Douglas/article/details/72784052
个人分类: C++
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

C++——NOIP提高组——转圈游戏

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭