马云:AI不应翻译成“人工智能”;马化腾:腾讯未来重心是开源

640?wx_fmt=png

640?wx_fmt=png

编辑:张佳、鹏飞

来源:新智元(ID:unity007)

【导读】智博会火热进行中,来自全球的智能科技领域的学界泰斗、业界翘楚、商界领袖带来顶尖的思想碰撞。本文梳理了包括马云、马化腾、图灵奖得主、菲尔兹奖得主的演讲讨论干货。

AI应该翻译成为“机器智能”,翻译成“人工智能”是人类把自己看得过大、过高——马云

产业竞争由“单打”变为“双打”——马化腾

汽车是长了腿的智能手机——王传福

AI取代人类是一个谬论——Niklaus Wirth

目前并不存在万能的通用解决方法,但数学能为人工智能的发展找到深层次的规律——Alessio Figalli

8月26日,以“智能化:为经济赋能,为生活添彩”的2019中国国际智能产业博览会(简称“智博会”)在重庆召开。

据悉,本次参会的嘉宾包括13名诺贝尔奖得主、4名图灵奖得主、2名菲尔兹奖得主、2名国际组织(机构)负责人、76名国内外知名院士、64名世界500强负责人等学者和大咖,为我们带来了顶尖的思想碰撞。

此外,还有来自全球的智能科技领域的学界泰斗、业界翘楚、商界领袖发表了主题演讲,今天,新智元为大家带来了演讲干货整理,一起来听听大师们的智慧。

640?wx_fmt=png

马云:AI翻译成“人工智能”是人类把自己看得过大、过高

马云以联合国数字合作高级别小组联合主席这个新身份亮相2019智博会,他分享了自己的一些思考和看法。

640?wx_fmt=png

马云在演讲的开始提到,数字技术应该让人类的发展更加普惠、更加可持续、更加绿色。同时,接下来全球化和技术都会产生巨大的变革:“过去人类是依水而聚,只要有水的地方,人类都去寻找,未来人类会依照数据而居住,要找到通数据的地方。

马云在演讲中谈及了该如何翻译“AI”,在他看来:AI应该翻译成为“机器智能”,翻译成“人工智能”是人类把自己看得过大、过高。

 

在马云看来,智能世界三要素包括:互联网、大数据和云计算。互联网是生产关系,大计算是生产力,大数据是生产资料。未来是互联网、大数据以及大计算这些生产关系、生产力和生产资料的关系。

 

马云还谈到了机器与人的关系:最终人应该更像人,机器应该更像机器。

 

“智能是改变世界的工具,智慧是改变智能的思想,引领未来的不是智能,引领未来的是智能背后人类的智慧。动物讲究本能、机器讲究智能、人类必须坚持自己的智慧。工业时代,技术让人类向外探索得更远、更广阔,我们一直探索月球、探索火星,但是人们特别关心的是技术、产品和服务,而事实上我坚定认为智能时代应该是让人类更加关注自己、关注内心、更加懂得人类本身。

 

智能世界不是让万物像人,而是让万物像人一样去学习,智能时代要解决的是人解决不了的问题,了解人不能了解的东西。机器要有自己独特的思考,人类必须尊重、敬畏机器的智能。很多事情对人类来讲很难,但机器非常容易,很多事情对机器很难,对人类来讲却非常容易。我们不断在研究机器怎么样可以像手一样灵活,其实人类永远会比机器更加灵活。

 

数据标注对于人类来讲非常容易,但是对于机器来讲就变得非常复杂。蒸汽机从来没有模仿过人的双臂,汽车从来没有模仿过人的双腿,计算机绝对不能模仿人脑的思考。过去我们把人变成了机器,未来机器会变成人,但最终人应该更像人,机器应该更像机器。

 

在马云看来:5G时代,通讯不会超过20%,物联网将占80%以上。

 

“智慧时代千万不要只把精力花在技术上、花在设备上,而是把我们的技术、设备花在人的进步身上、人的感受身上。智能时代不应该、也不能让人失业,而是让人去做更有价值的事情。1G、2G是以个人电脑、PC为主,3G、4G以手机,也就是多了一个手机,而5G开始,只要通电的都是端,所有通电的都会连接起来。

 

互联网时代是人与人、人与机器的关系,5G时代是机器与机器、端与端之间的关系,5G时代会把很多企业永远留在4G和3G时代,包括我们BAT,往往这个时代做得最好的会被下一个时代所淘汰,只有用好5G、尊重5G,并且担当起5G时代的创新和责任,才有可能进入5G时代。

 

我们现在讲了很多5G,其实现在讨论的大部分都是跟5G的通讯有关,其实5G时代,通讯不会超过20%,物联网将占80%以上。智能世界,每一样东西都会有一个芯片,而这些芯片之间,它们会讲话、会计算、会付费、会交流。所以我想我们对于未来的认识绝对不能停留在今天。”

 

马云在演讲中还谈到了BAT,他认为:BAT不是多了,而是少了

 

“今天中国的数字经济有这样的发展,有了BAT这样规模的企业,我认为这是和中国经济在过去二十年的发展,成为世界第二大经济体的体量是相吻合的。

 

现在有人说中国互联网巨头,担心中国的企业做得越大,我个人觉得BAT不是多了,而是少了,中国这样的国家应该有几十家这样大的企业。很多人担心创新企业、市场企业做大,中国现在的互联网公司是靠创新、靠市场做起来的,我们不应该害怕创新企业变成巨头,我们应该担心的是巨头不创新。

640?wx_fmt=png

马化腾:产业竞争“单打”变为“双打”,腾讯未来重心是开源

马化腾从行业一线从业者的角度分享了关于“如何应对新一轮科技和产业革命”的一些看法。

640?wx_fmt=jpeg

1、产业竞争的主赛场正在由过去的“单打”PK逐渐变为“双打”比赛。

过去,商业竞争往往是围绕垂直细分产业的单打独斗。今天,当信息化这个最大的变量,开始融入各行各业,产业竞争的方式正在发生改变:垂直纵深的各个实体产业,与横向延伸的信息产业相结合,形成纵横交错的新搭档。产业竞争,已经演变为“双打”比赛。

马化腾认为,工信部很早就提出的“两化融合”具有重要的战略意义,产业互联网正是“两化融合”的重要载体和突破口。而目前产业竞争的主赛场,也正在由“单打”逐渐变为“双打”。

2、面对经济转型和产业升级,需要不断激发创新潜力,打造更多的“拳头产品”。

过去几十年,中国经济和产业的高速发展,主要得益于外延式拓展。未来几十年,中国要实现高质量发展,必须发挥出我们的创新潜力。今天的中国产业界,需要更多拼搏精神。只有最大限度地发挥创新潜力,我们才能把“挑战”变成“机遇”。

3、攀登科技和产业的“珠峰”,往往要依赖“科技共同体”和“全球产业生态”。

正如5G并不是一项单一技术,而是一系列技术创新,需要“联合登山队”来征服。今天,没有哪个国家完全拥有全球新一轮科技和产业革命所需的全部资源、技术和能力。产业割裂和技术脱钩将会损害整个人类的长远利益。由此,我们更加清楚地看到中国全面深化改革开放的战略定力和远见。

目前,腾讯已在GitHub上发布82个repo,涉及微信、腾讯云、腾讯游戏、腾讯AI、腾讯安全等相关领域,为行业提供全面的解决方案、帮助开发者获取相应技术能力、提供标准化的工具框架。

据报道,腾讯专门成立了开源管理办公室,下设开源管理组、腾讯开源联盟和开源合规组三大组织,由不同业务的技术专家、负责人、技术领袖组成开源联盟组委会和专家团,并且将三个广受社区认可的开源项目Tars、TSeer和Angel分别捐赠Linux基金会,Linux深度学习基金会,并将长期于基金会运作。

640?wx_fmt=png

AI超越人类?图灵奖和菲尔兹奖得主怎么看

在本届智博会上,图灵奖和菲尔兹奖得主也分享了自己关于AI能否超越人类的看法。

1984年图灵奖获得者尼古拉斯·沃斯(Niklaus Wirth)认为:AI只能产生人类已经投入进去的东西,并不具有创造性,AI取代人类是一个谬论。

640?wx_fmt=jpeg

尼古拉斯·沃斯

不过他也表达了一丝担忧,认为给AI提供的养料有点过多,我们不能判断它接下来做什么、对或错。如果人类不能干预AI决策,就会存在极大的风险。

他同时还认为,中国的优势在于拥有庞大的数据,如果要发展大数据智能化产业,需要培养更多人工智能方面的人才。

1985年图灵奖获得者理查德·卡普(Richard Manning Karp)也不同意AI统治世界的观点。

640?wx_fmt=jpeg

理查德·卡普

他认为现在的人工智能连小孩都不如,而且只有在特定的场景下才能完全发挥作用,很多场景下,AI的表现差强人意。相比统治人类,卡普更担心AI技术被滥用,甚至被别有用心的人利用。

2015年图灵奖获得者马丁·赫尔曼(Martin Edward Hellman)表示:说得对!

2018年菲尔兹奖获得者考切尔·比尔卡尔(Caucher Birkar)对AI的未来不太敢轻易下定论,他自称自己是一个纯数学家而非计算机科学家。

640?wx_fmt=jpeg

考切尔·比尔卡尔

2018年菲尔兹奖得主阿莱西奥·菲加利(Alessio Figalli)称人工智能的不完美之处,目前并不存在万能的通用解决方法,但数学能为人工智能的发展找到深层次的规律

640?wx_fmt=jpeg

阿莱西奥·菲加利

数学不但能为人工智能提供数据分析、机器算法等工具,更能在发展规律和思维层次上为人工智能带来提升和优化。

他建议人工智能领域的研究者和工作者重视数学,加强学科融合互通,让数学在人工智能的发展中发挥更重要的作用。

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

- 加入社群吧 -

640?wx_fmt=png

去年,谷歌发布了 Google Neural Machine Translation (GNMT),即谷歌神经机器翻译,一个 sequence-to-sequence (“seq2seq”) 的模型。现在,它已经用于谷歌翻译的产品系统。   虽然消费者感受到的提升并不十分明显,谷歌宣称,GNMT 对翻译质量带来了巨大飞跃。   但谷歌想做的显然不止于此。其在官方博客表示:“由于外部研究人员无法获取训练这些模型的框架,GNMT 的影响力受到了束缚。”   如何把该技术的影响力最大化?答案只有一个——开源。   因而,谷歌于昨晚发布了 tf-seq2seq —— 基于 TensorFlow 的 seq2seq 框架。谷歌表示,它使开发者试验 seq2seq 模型变得更方便,更容易达到一流的效果。另外,tf-seq2seq 的代码库很干净并且模块化,保留了全部的测试覆盖,并把所有功能写入文件。   该框架支持标准 seq2seq 模型的多种配置,比如编码器/解码器的深度、注意力机制(attention mechanism)、RNN 单元类型以及 beam size。这样的多功能性,能帮助研究人员找到最优的超参数,也使它超过了其他框架。详情请参考谷歌论文《Massive Exploration of Neural Machine Translation Architectures》。   上图所示,是一个从中文到英文的 seq2seq 翻译模型。每一个时间步骤,编码器接收一个汉字以及它的上一个状态(黑色箭头),然后生成输出矢量(蓝色箭头)。下一步,解码器一个词一个词地生成英语翻译。在每一个时间步骤,解码器接收上一个字词、上一个状态、所有编码器的加权输出和,以生成下一个英语词汇。雷锋网(公众号:雷锋网)提醒,在谷歌的执行中,他们使用 wordpieces 来处理生僻字词。   据雷锋网了解,除了机器翻译,tf-seq2seq 还能被应用到其他 sequence-to-sequence 任务上;即任何给定输入顺序、需要学习输出顺序的任务。这包括 machine summarization、图像抓取、语音识别、对话建模。谷歌自承,在设计该框架时可以说是十分地仔细,才能维持这个层次的广适性,并提供人性化的教程、预处理数据以及其他的机器翻译功能。   谷歌在博客表示: “我们希望,你会用 tf-seq2seq 来加速(或起步)你的深度学习研究。我们欢迎你对 GitHub 资源库的贡献。有一系列公开的问题需要你的帮助!”   GitHub 地址:https://github.com/google/seq2seq   GitHub 资源库:https://google.github.io/seq2seq/nmt/ 标签:tensorflow  seq2seq  谷歌  机器学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值