推荐开源项目:Mobility — 多语言翻译利器

推荐开源项目:Mobility — 多语言翻译利器

mobilityPluggable Ruby translation framework项目地址:https://gitcode.com/gh_mirrors/mo/mobility

1、项目介绍

Mobility 是一个为你的 Ruby 应用程序提供强大多语言支持的宝石(Gem)。它允许你在模型类上像处理常规属性一样存储和检索翻译内容,无论是博客文章、图片标题还是其他任何需要翻译的内容。这个库设计精巧,支持多种存储策略,并且跨平台,兼容 ActiveRecord 和 Sequel ORM。

2、项目技术分析

  • 灵活的后端系统:默认情况下,Mobility 使用共享表格来存储翻译,但也支持如列翻译、模型翻译表、JSONB 或 Hstore 等多种存储方式。这使得你可以根据数据库类型和性能需求选择最适合的解决方案。
  • 插件系统:通过插件机制,你可以启用或自定义不同的功能,如读取器、写入器,甚至可以扩展到其他 ORM 平台。
  • 与 ActiveRecord 和 Sequel 集成:无论你选择哪个 ORM,Mobility 都能无缝集成,提供了相似的 API,方便切换和使用。

3、项目及技术应用场景

  • 内容管理系统(CMS):用于管理多语言网站内容,例如博客、新闻或产品详情。
  • 电子商务:处理多语言商品描述和分类标签。
  • 社交应用:在多语环境中管理用户产生的内容,如评论和标签。
  • API 后端:构建 RESTful API 并提供多语言响应。
  • 数据分析:处理多语言数据集并进行本地化的报告和可视化。

4、项目特点

  1. 简单易用:只需几行代码就可以开启模型的多语言翻译特性。
  2. 动态语言适应:值会随着 I18n.locale 的改变而自动切换,无需额外代码。
  3. 强大的访问器:支持直接通过特定语言获取或设置翻译,也可以轻松扩展以适应任何需要的场景。
  4. 跨平台:在 ActiveRecord 和 Sequel 上都能工作,未来还将支持更多 ORM 平台。
  5. 定制化:通过插件系统,可以根据项目需求定制和扩展功能。

如果你正在寻找一个能够简化多语言内容管理的解决方案,那么 Mobility 就是你的不二之选。其高效的性能和高度的灵活性将使你的开发工作变得更加轻松。现在就加入社区,享受 Mobility 带来的便利吧!

mobilityPluggable Ruby translation framework项目地址:https://gitcode.com/gh_mirrors/mo/mobility

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

去年,谷歌发布了 Google Neural Machine Translation (GNMT),即谷歌神经机器翻译,一个 sequence-to-sequence (“seq2seq”) 的模型。现在,它已经用于谷歌翻译的产品系统。   虽然消费者感受到的提升并不十分明显,谷歌宣称,GNMT 对翻译质量带来了巨大飞跃。   但谷歌想做的显然不止于此。其在官方博客表示:“由于外部研究人员无法获取训练这些模型的框架,GNMT 的影响力受到了束缚。”   如何把该技术的影响力最大化?答案只有一个——开源。   因而,谷歌于昨晚发布了 tf-seq2seq —— 基于 TensorFlow 的 seq2seq 框架。谷歌表示,它使开发者试验 seq2seq 模型变得更方便,更容易达到一流的效果。另外,tf-seq2seq 的代码库很干净并且模块化,保留了全部的测试覆盖,并把所有功能写入文件。   该框架支持标准 seq2seq 模型的多种配置,比如编码器/解码器的深度、注意力机制(attention mechanism)、RNN 单元类型以及 beam size。这样的多功能性,能帮助研究人员找到最优的超参数,也使它超过了其他框架。详情请参考谷歌论文《Massive Exploration of Neural Machine Translation Architectures》。   上图所示,是一个从中文到英文的 seq2seq 翻译模型。每一个时间步骤,编码器接收一个汉字以及它的上一个状态(黑色箭头),然后生成输出矢量(蓝色箭头)。下一步,解码器一个词一个词地生成英语翻译。在每一个时间步骤,解码器接收上一个字词、上一个状态、所有编码器的加权输出和,以生成下一个英语词汇。雷锋网(公众号:雷锋网)提醒,在谷歌的执行中,他们使用 wordpieces 来处理生僻字词。   据雷锋网了解,除了机器翻译,tf-seq2seq 还能被应用到其他 sequence-to-sequence 任务上;即任何给定输入顺序、需要学习输出顺序的任务。这包括 machine summarization、图像抓取、语音识别、对话建模。谷歌自承,在设计该框架时可以说是十分地仔细,才能维持这个层次的广适性,并提供人性化的教程、预处理数据以及其他的机器翻译功能。   谷歌在博客表示: “我们希望,你会用 tf-seq2seq 来加速(或起步)你的深度学习研究。我们欢迎你对 GitHub 资源库的贡献。有一系列公开的问题需要你的帮助!”   GitHub 地址:https://github.com/google/seq2seq   GitHub 资源库:https://google.github.io/seq2seq/nmt/ 标签:tensorflow  seq2seq  谷歌  机器学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢璋声Shirley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值