ZOJ3988 Prime Set (匈牙利算法求解)

博客介绍了如何使用匈牙利算法解决ZOJ3988 Prime Set问题。当给定n个数a[i],如果a[i]+a[j]是素数,则集合{i, j}称为Prime Set。问题要求在至多取k个集合的情况下,合并后的集合大小最大是多少。解法包括找出所有两两不相交的Prime Set,根据最大匹配数确定答案,可能是2*k或2*t + min(tt, k-t)。" 113854365,10589562,旋转数组的最小数字:改造二分法解析,"['算法', '数据结构', '数组', '搜索算法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:ZOJ - 3988 Prime Set

题意:

  • 给出n个数, a[1]~a[n]
  • 若a[i]+a[j]是素数,那么称 集合{i, j} 为Prime set
  • 给定k, 表示至多从由这n个数组成的Prime set中取出k个集合
  • 问:取出的集合合并后,集合的大小最大为多少?(注意,此处集合元素是下标,而不是a[i],{1, 2} U {1, 3} = {1, 2, 3} ,故集合大小为3)

解法:

  • 首先,求出所有的Prime Set集合
  • 先从中选出 所有的两两不相交的集合, 假设其个数为t(如{1, 3}, {2, 4},这就是求最大匹配数)
  • 若 t >= k ,由于每个集合有两个元素所以,答案即为 2*k (因为至多选择出k个两两不相交的集合,而每个集合有两个元素,故为2* k)
  • 若 t < k ,即取出所有两两不相交的集合后,还可选择 k-t个未被匹配的元素,先求出未被匹配的元素,假设其个数为 tt, 那么这答案就是 2*t + min(tt, k-t),(因为建图时候,元素i都会与另外一个元素j相连表示{i, j}是Prime set, 若i未被匹配,表示{ i, j}中,j已匹配其他元素,故若选择{i, j}只会得到1个不同元素i)
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a; i<=b; ++i)
#define repp(i,a,b) for(int i=b; i>=a; --i)
#define mp make_pair
#define pb push_back
#define ms(a, b) memset(a, b, sizeof(a))
#define Size(x) (int)(x.size())
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int>vi;

const int maxn = 3e3+7;
const int maxnn = 2e6+5;
int a[maxn], n, kk, p[maxnn];
bool prime[maxnn];
vector<int>maps[maxn];

void getprime(){
    kk = 0;
    int x;
    int i, j;
    for(i=2; i<=maxnn-2; ++i){
        if(!prime[i]) p[kk++] = i;
        for(j=0; j<=kk; ++j){
            if(i*p[j] > maxnn-2) break;
            prime[i*p[j]] = 1;
            if(i%p[j] == 0) break; 
        }
    }
    return ;
}
bool visit[maxn];
int mark[maxn];
bool dfs(int u){
    visit[u] = true;
    rep(j, 0, Size(maps[u])-1){
        int i = maps[u][j];
        if(!visit[i]) {
            visit[i] = true;
            if(mark[i] == 0 || dfs(mark[i])){
                mark[i] = u;
                mark[u] = i;
                return true;
            }
        }
    }
    return false;
}
int solve(){
    int ans=0;
    rep(i, 1, n){
        if(mark[i] != 0 ) continue;
        rep(j, 0, n) visit[j]=false;
        if(dfs(i)) ans++;
    }
    return ans;
}
int main(){
    //freopen("in.txt", "r", stdin);
    getprime();
    int t;
    scanf("%d", &t);
    while(t--){
        int k;
        scanf("%d %d", &n, &k);
        rep(i, 1, n){
            scanf("%d", &a[i]);
            visit[i] = false;
            maps[i].clear();
            mark[i] = -1;
        }
        rep(i, 1, n){
            rep(j, i+1, n){
                if(!prime[a[i]+a[j]]){
                    visit[i] = visit[j] = true;
                    mark[i] = mark[j] = 0;
                    maps[i].pb(j);
                    maps[j].pb(i);
                }
            }
        }
        int ans = solve();//最大完美匹配数 
        if(ans >= k) printf("%d\n", k*2);
        else {
            int x = 0;
            rep(i, 1, n) {
                if(!mark[i]) x++;
            }
            printf("%d\n", ans*2+min(x, k-ans));
        }
    }

    return 0;
}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值