1 解题思想
这道题可以理解了为给了n个硬币,然后需要你按照这个规则:
第i层放i个硬币
那么,这n个硬币,能够完整的摆好多少层,比如说在第五层时只放了3个,那么完整的摆了4层,输出4
这道题直接用等差数列求和公式倒推就可以
直接看公式就可以了
/* 数学推导
假设完成K层,一共N个,由等差数列求和公式有:
(1+k)*k/2 = n
一步步推导:
k+k*k = 2*n
k*k + k + 0.25 = 2*n + 0.25
(k + 0.5) ^ 2 = 2*n +0.25
k + 0.5 = sqrt(2*n + 0.25)
k = sqrt(2*n + 0.25) - 0.5
这里k是个浮点数,将其取为小于k的最大整数就可以
*/
2 原题
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
3 AC解
public class Solution {
public int arrangeCoins(int n) {
/* 数学推导
(1+k)*k/2 = n
k+k*k = 2*n
k*k + k + 0.25 = 2*n + 0.25
(k + 0.5) ^ 2 = 2*n +0.25
k + 0.5 = sqrt(2*n + 0.25)
k = sqrt(2*n + 0.25) - 0.5
*/
return (int) (Math.sqrt(2*(long)n+0.25) - 0.5);
}
}