Leetcode 441. Arranging Coins 硬币放置 解题报告

1 解题思想

这道题可以理解了为给了n个硬币,然后需要你按照这个规则:
第i层放i个硬币

那么,这n个硬币,能够完整的摆好多少层,比如说在第五层时只放了3个,那么完整的摆了4层,输出4

这道题直接用等差数列求和公式倒推就可以

直接看公式就可以了
/* 数学推导
假设完成K层,一共N个,由等差数列求和公式有:
(1+k)*k/2 = n
一步步推导:
k+k*k = 2*n
k*k + k + 0.25 = 2*n + 0.25
(k + 0.5) ^ 2 = 2*n +0.25
k + 0.5 = sqrt(2*n + 0.25)
k = sqrt(2*n + 0.25) - 0.5
这里k是个浮点数,将其取为小于k的最大整数就可以
*/

2 原题

You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1: 
n = 5

The coins can form the following rows:
¤
¤ ¤
¤ ¤

Because the 3rd row is incomplete, we return 2.

Example 2: 
n = 8

The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤

Because the 4th row is incomplete, we return 3.

3 AC解

public class Solution {
    public int arrangeCoins(int n) {
        /* 数学推导
        (1+k)*k/2 = n
        k+k*k = 2*n
        k*k + k + 0.25 = 2*n + 0.25
        (k + 0.5) ^ 2 = 2*n +0.25
        k + 0.5 = sqrt(2*n + 0.25)
        k = sqrt(2*n + 0.25) - 0.5
        */
        return (int) (Math.sqrt(2*(long)n+0.25) - 0.5);
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值