逻技鼠标蓝牙连接Mac无法被logi Options检测到

Mac电脑的logi options+无所搜索到蓝牙连接的鼠标

  • 电脑 Mac M1 pro
  • 系统:MacOS 13 Ventura.

楼主买了一个逻技M650鼠标,用它蓝牙连接Mac M1 pro之后,logi options搜索不到该设备,所以没有办法进行鼠标的设定。

前提:确保系统偏好设置中,bluetooth和accessibility设置全打开logi options+。并多次尝试蓝牙连接删除M650 mice。

解决方法

删除访达目录/Library/Preferences中的apple蓝牙设定文件com.apple.Bluetooth.plist;完毕!
参考官方文章[https://support.logi.com/hc/en-us/articles/360023195654]

其他尝试了的办法

  1. 安装 logi deamon option软件,没用
  2. 开放系统偏好的各种设置,没用
### 配置深度学习环境于Ubuntu 20.04 #### 安装操作系统更新 为了确保系统的稳定性和安全性,在安装任何新软件之前,应该先更新现有的包列表并升级已安装的软件包到最新版本。这可以通过运行以下命令来完成[^1]: ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装必要的依赖项 一些基础工具对于后续操作至关重要,比如构建工具和其他可能被CUDA或其他组件使用的库文件。执行下面给出的指令可以安装这些必需品[^1]: ```bash sudo apt install build-essential cmake git unzip pkg-config curl wget vim -y ``` #### NVIDIA驱动程序与CUDA Toolkit设置 大多数情况下,GPU加速能够显著提升训练模型的速度。因此如果硬件支持的话,建议按照官方指南安装合适的NVIDIA驱动以及对应的CUDA toolkit版本[^2]。 #### Anaconda Python发行版部署 Anaconda是一个广泛应用于数据科学领域的Python分发平台,它自带了大量的预编译科学计算包,并简化了虚拟环境中管理不同项目所需的特定版本的需求。通过下载页面获取适合Linux系统的安装脚本之后,依照提示完成整个过程即可[^3]。 #### 创建新的Conda环境并激活 创建一个新的隔离环境有助于防止不同项目的依赖冲突问题发生。这里以`tensorflow-gpu==2.8.0`为例说明如何建立一个名为deep_learning_env的新环境[^4]: ```bash conda create --name deep_learning_env python=3.9 tensorflow-gpu=2.8.0 conda activate deep_learning_env ``` #### PyTorch框架及其他常用库的加入 除了TensorFlow之外,PyTorch也是另一个非常流行的选择之一。可以在已经存在的环境中继续添加其他想要尝试的数据处理、可视化等方面的扩展包[^5]: ```bash pip install torch torchvision torchaudio pandas matplotlib scikit-learn jupyterlab ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值