Description
Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?
Input
The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.
Output
For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.
Sample Input
5 1
6 3
2
6
Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?
Input
The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.
Output
For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.
Sample Input
5 1
6 3
10 4
Sample Output2
6
16
这道题是求组合数的约数个数,利用c(n,k)=(n-k+1)/k*c(n,k-1) 进行素因子的递推即可,不需要高精度。
#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
#include <map>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
using namespace std;
#define LL long long
#define maxn 1001
int a[maxn];
LL f[maxn][maxn];
int prime[100],c;
int v[maxn];
void p()
{
int i,j,n=maxn,m;
c=0;
m=(LL)sqrt(n+0.5);
memset(v,0,sizeof(v));
for(i=2;i<=m;i++)
if(!v[i]){
for(j=i*i;j<=n;j+=i)
v[j]=1;
}
for(j=2;j<=n;j++){
if(!v[j]){
prime[c++]=j;
}
}
}
void ad(int n,int flag)
{
if(flag==1){
for(int i=0;i<c&&n>1;i++){
while(n%prime[i]==0){
n/=prime[i];
a[i]++;
}
}
}else{
for(int i=0;i<c&&n>1;i++){
while(n%prime[i]==0){
n/=prime[i];
a[i]--;
}
}
}
}
void pr(int i,int j)
{
f[i][j]=1;
for(int t=0;t<c;t++){
f[i][j]*=(a[t]+1);
}
}
void fen()
{
for(int i=0;i<=431;i++){
memset(a,0,sizeof(a));
f[i][0]=1;
for(int j=1;j<=i;j++){
ad(i-j+1,1);
ad(j,0);
pr(i,j);
}
}
}
int main()
{
int n,k;
p();
fen();
while(~scanf("%d%d",&n,&k)){
printf("%lld\n",f[n][k]);
}
return 0;
}