高数-第九章-多元函数的微分法

本文详细阐述了多元函数的微分学概念,包括可微性、偏导数和连续性的关系,以及它们在复合函数、隐函数求导中的应用。还讨论了空间曲线的切线和法平面,曲面的切平面与法线,并介绍了方向导数和梯度的概念。最后,提到了多元函数极值的求解定理和方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三节-全微分

多元函数之间的复杂关系(狗血的判断题)

箭头表示能否推出

  1. 可微:可以理解为四面八方都光滑

  1. 偏导数:可以理解为偏方向光滑

  1. 连续:可以理解为四面八方都连续(包括尖点)

结论性语句:(充分条件:由小推大)

  1. 可微(等效成光滑), 偏导必存在(),函数连续 推不出偏导数连续(反例;出现间断点)

  1. 偏导数连续, 函数可微

  1. 函数连续,极限存在

一元函数的复杂关系

函数可导推出函数必连续

第四节-复合函数求偏导

会求就行

第五节-隐函数的求导法则

定理1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是先森丫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值