何为机器学习?
机器学习是从数据中提取知识,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是统计学、人工智能和计算机科学交叉的研究领域,也被称为预测分析(predictive analytics)或统计学习(statistical learning)。
机器学习的定义
1.机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
2.机器学习是对能通过经验自动改进的计算机算法的研究。
3.机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
基于学习方式的分类
(1)监督学习(有导师学习):输人数据中有导师信号,以概率函数、代数函数或人工神经网络为基函数模型,采用迭代计算方法,学习结果为函数。
(2)无监督学习(无导师学习):输入数据中无导师信号,采用聚类方法,学习结果为类别。典型的无导师学习有发现学习、聚类、竞争学习等。
(3)强化学习(增强学习):以环境反惯(奖/惩信号)作为输人,以统计和动态规划技术为指导的一种学习方法。
发展历程
机器学习实际上已经存在了几十年或者也可以认为存在了几个世纪。追溯到17世纪,贝叶斯、拉普拉斯关于最小二乘法的推导和马尔可夫链,这些构成了机器学 习广泛使用的工具和基础。1950年(艾伦.图灵提议建立一个学习机器)到2000年初 (有深度学习的实际应用以及最近的进展,比如2012年的AlexNet),机器学习有了很大的进展。
从20世纪50年代研究机器学习以来,不同时期的研究途径和目标并不相同,可以划分为四个阶