机器学习(一)概述

本文介绍了机器学习的基本概念,包括监督学习、无监督学习和强化学习的分类,以及机器学习的发展历程。同时提到了学习资源,如Andrew Ng的机器学习课程,以及人工智能学习路径的五个阶段。
摘要由CSDN通过智能技术生成

何为机器学习?

机器学习是从数据中提取知识,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是统计学、人工智能和计算机科学交叉的研究领域,也被称为预测分析(predictive analytics)或统计学习(statistical learning)。

机器学习的定义

1.机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
2.机器学习是对能通过经验自动改进的计算机算法的研究。
3.机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

基于学习方式的分类

(1)监督学习(有导师学习):输人数据中有导师信号,以概率函数、代数函数或人工神经网络为基函数模型,采用迭代计算方法,学习结果为函数。
(2)无监督学习(无导师学习):输入数据中无导师信号,采用聚类方法,学习结果为类别。典型的无导师学习有发现学习、聚类、竞争学习等。
(3)强化学习(增强学习):以环境反惯(奖/惩信号)作为输人,以统计和动态规划技术为指导的一种学习方法。

发展历程

机器学习实际上已经存在了几十年或者也可以认为存在了几个世纪。追溯到17世纪,贝叶斯、拉普拉斯关于最小二乘法的推导和马尔可夫链,这些构成了机器学 习广泛使用的工具和基础。1950年(艾伦.图灵提议建立一个学习机器)到2000年初 (有深度学习的实际应用以及最近的进展,比如2012年的AlexNet),机器学习有了很大的进展。

从20世纪50年代研究机器学习以来,不同时期的研究途径和目标并不相同,可以划分为四个阶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值