随着9月份MLCommons公布了MLPerf Storage v1.0测试结果,一场席卷整个存储行业的性能竞赛就此展开。用数据说话,也更加有力地展示了存储对于人工智能的重要价值。
MLPerf Storage v1.0本质上是此前我们测试过的DLIO Benchmark。DLIO针对多种典型深度学习训练任务制定了快速、科学的IO性能测试方法,通过参数调整,可以模拟不同的GPU,让开发人员能够根据其具体配置进行存储优化,从而提高GPU的使用率。
MLPerf Storage通过更加严谨、统一的参数设置指导,让来自不同厂商、不同硬件配置的测试结果更具参考性与可比较性。DLIO Benchmark的相关介绍、测试逻辑,在前文中有详细介绍,感兴趣的小伙伴可以看这里:《实测!高性能PCIe 5.0 SSD为AI训练贡献了啥?》
这一次,我们基于MLPerf Storage v1.0和默认脚本参数,对我们最新发布的PBlaze7 7A40系列PCIe 5.0 SSD进行完整的IO性能测试。模拟GPU为NVIDIA A100,相较于之前测试使用的V100,A100的运算耗时被缩短了50%以上,对存储性能也就提出了更高的要求。
测试依旧在此前使用的服务