xcLeigh
CSDN博客专家,全网流量超千万,全网粉丝超二十万,专注于产品测评宣传,推广活动策划,团队项目研发,毕业设计讲解答疑等,欢迎您的来信,合作共赢!
展开
-
工业缺陷检测:基于深度学习的表面缺陷分类
工业缺陷检测:基于深度学习的表面缺陷分类 ,人工智能,计算机视觉,大模型,AI,在现代工业生产中,产品质量直接影响企业的竞争力和声誉,工业缺陷检测作为质量把控的重要环节,其技术的发展至关重要。传统的人工检测方式效率低、成本高且易受主观因素影响,难以满足大规模、高精度的生产需求。随着深度学习技术的蓬勃发展,基于深度学习的工业表面缺陷分类方法凭借强大的特征提取和模式识别能力,成为解决工业缺陷检测难题的有效途径。本文将深入探讨基于深度学习的工业表面缺陷分类技术,结合详细的代码示例和概念解析。原创 2025-05-21 08:50:27 · 1816 阅读 · 33 评论 -
自动驾驶视觉感知:车道线检测与障碍物识别
自动驾驶视觉感知:车道线检测与障碍物识别 ,人工智能,计算机视觉,大模型,AI,在人工智能与汽车工业深度融合的当下,自动驾驶技术成为科技领域的热门焦点。自动驾驶系统的正常运行依赖于多模块协同工作,其中视觉感知作为车辆 “观察” 外界环境的核心模块,承担着获取道路信息的重任。车道线检测能够帮助车辆确定自身在车道中的位置,规划行驶路径;障碍物识别则可及时发现潜在危险,保障行车安全。本文将深入探讨自动驾驶视觉感知中的车道线检测与障碍物识别技术,结合丰富的代码示例和详细的概念解析,带您揭开其神秘面纱。原创 2025-05-21 08:50:07 · 1781 阅读 · 51 评论 -
医疗影像分析实战:肺炎X光片分类与分割
医疗影像分析实战:肺炎X光片分类与分割 ,人工智能,计算机视觉,大模型,AI,在医疗领域,医疗影像分析技术凭借其高效、精准的特点,成为疾病诊断与治疗的重要辅助手段。肺炎作为一种常见的呼吸道疾病,严重威胁人类健康,通过 X 光片对肺炎进行诊断是临床常用方法。利用计算机技术实现肺炎 X 光片的自动分类与分割,不仅能减轻医生的工作负担,还能提高诊断的准确性和效率。本文将深入讲解肺炎 X 光片分类与分割的实战过程,结合大量代码示例和关键概念解析,帮助读者掌握相关技术。原创 2025-05-19 08:53:00 · 6978 阅读 · 62 评论 -
OCR技术解析:用Tesseract和PaddleOCR识别文本
OCR技术解析:用Tesseract和PaddleOCR识别文本 ,人工智能,计算机视觉,大模型,AI,光学字符识别(Optical Character Recognition,简称 OCR)是一项将图片、扫描件等文档中的文字信息转换为可编辑文本的技术。在数字化时代,OCR 技术广泛应用于文档处理、车牌识别、身份证识别、古籍数字化等领域,极大地提高了文字信息处理的效率。Tesseract 和 PaddleOCR 是两款极具代表性的 OCR 工具。原创 2025-05-19 08:52:48 · 7075 阅读 · 55 评论 -
图像风格迁移实战:从Neural Style到AdaIN
图像风格迁移实战:从Neural Style到AdaIN ,人工智能,计算机视觉,大模型,AI,在计算机视觉领域,图像风格迁移是一项极具魅力且富有创意的技术。它旨在将一幅图像(风格图像)的艺术风格迁移到另一幅图像(内容图像)上,生成同时具有内容图像的语义信息和风格图像视觉风格的新图像。从早期的 Neural Style(神经风格迁移)到后来的 AdaIN(自适应实例归一化),图像风格迁移技术在算法效率、效果质量等方面都取得了巨大的进步。本文将深入探讨这两种经典方法,结合详细的代码示例,带你了解图像风格。原创 2025-05-16 10:18:53 · 13039 阅读 · 53 评论 -
实时目标检测项目:基于YOLOv5的交通监控系统
实时目标检测项目:基于 YOLOv5 的交通监控系统 人工智能,计算机视觉,大模型,AI,在当今社会,交通流量的急剧增长给交通管理带来了巨大挑战。传统的交通监控方法依赖人工观察,效率低下且难以实时全面地掌握交通状况。实时目标检测技术在交通监控领域的应用,能够自动识别和跟踪交通场景中的各种目标,如车辆、行人、交通标志等,为交通管理部门提供准确的数据支持,有助于优化交通流量、提高交通安全水平和减少交通拥堵。原创 2025-05-16 10:18:42 · 13146 阅读 · 77 评论 -
计算机视觉:用Python+OpenCV实现人脸检测与识别
计算机视觉:用Python+OpenCV实现人脸检测与识别 在当今数字化时代,计算机视觉技术正以前所未有的速度发展,而人脸检测与识别作为其中的重要分支,广泛应用于安防监控、门禁系统、智能拍照、社交媒体等诸多领域。Python 凭借其简洁易读的语法和丰富的库支持,成为了计算机视觉领域的首选编程语言。OpenCV(Open Source Computer Vision Library)作为一个强大的开源计算机视觉库,提供了众多用于图像处理和计算机视觉任务的函数和工具,使得我们能够方便快捷地实现人脸检测与识别功能原创 2025-05-14 08:50:06 · 23139 阅读 · 8 评论 -
多模态视觉模型:CLIP与ALIGN如何连接图文?
多模态视觉模型:CLIP与ALIGN如何连接图文? 在人工智能领域,实现图像和文本两种模态信息的有效关联与交互,一直是研究的热点和难点。模态视觉模型旨在打破图像与文本之间的 “语义鸿沟”,让计算机能够理解图像与文本背后的语义联系。CLIP(Contrastive Language-Image Pretraining)和 ALIGN(A Large-scale In-domain Generalized Representations from Transformers)作为其中的代表性模型。原创 2025-05-14 08:49:12 · 23158 阅读 · 42 评论 -
模型压缩技术:剪枝、量化与知识蒸馏实战
模型压缩技术:剪枝、量化与知识蒸馏实战,在深度学习领域,模型的性能往往与模型的规模紧密相关,更大的模型通常能学习到更复杂的模式,从而在任务中取得更好的效果。然而,随着模型规模的不断增大,其在实际应用中面临着诸多挑战,如内存占用高、计算资源需求大、推理速度慢等问题,这使得在资源受限的设备(如移动设备、嵌入式设备)上部署变得困难重重。模型压缩技术应运而生,它旨在在尽可能保持模型性能的前提下,通过各种方法减少模型的参数数量和计算量,提高模型的效率和可部署性。原创 2025-05-12 08:49:34 · 28765 阅读 · 46 评论 -
【计算机视觉】自监督学习在CV中的突破:SimCLR、MoCo与BYOL
自监督学习在CV中的突破:SimCLR、MoCo与BYOL,人工智能、大模型、AI深度学习在计算机视觉领域取得了令人瞩目的进展,自监督学习作为一种新兴的学习范式,旨在利用数据自身的结构和信息进行学习,无需大量的人工标注。其核心思想是通过设计合适的自监督任务,让模型从数据中自动挖掘出有价值的特征表示。在 CV 领域,自监督学习为解决标注数据匮乏的问题提供了新的思路,近年来取得了一系列突破性进展,其中 SimCLR、MoCo 和 BYOL 等方法尤为引人注目。原创 2025-05-05 09:18:37 · 49108 阅读 · 54 评论 -
【计算机视觉】生成对抗网络(GAN)在图像生成中的应用
生成对抗网络(GAN)在图像生成中的应用,人工智能、大模型、AI深度学习在计算机视觉领域取得了令人瞩目的进展,图像生成作为计算机视觉领域的关键任务,具有广泛的应用前景。在娱乐产业中,它可用于电影特效制作、游戏场景与角色创建,为用户带来更加逼真、奇幻的视觉体验。在设计领域,能辅助设计师快速生成创意草图、进行产品外观的初步设计,极大提高设计效率。在医疗领域,通过生成特定的医学图像,有助于医生进行疾病的模拟诊断与治疗方案规划。原创 2025-04-30 08:50:03 · 64199 阅读 · 47 评论 -
【计算机视觉】语义分割实战:FCN、U-Net与DeepLab系列详解
语义分割实战:FCN、U-Net与DeepLab系列详解,人工智能、大模型、AI深度学习在计算机视觉领域取得了令人瞩目的进展,语义分割作为计算机视觉领域的关键任务,旨在将图像中的每个像素都分配到特定的类别中,实现对图像内容的精细理解。与目标检测关注物体的类别与位置不同,语义分割能够对场景中的所有元素进行像素级别的分类,这在自动驾驶、医学图像分析、遥感图像解译等众多领域都有着至关重要的应用。例如,在自动驾驶中,准确的语义分割可以帮助车辆识别道路、行人、交通标志等,为安全行驶提供决策依据;在医学图像分析中……原创 2025-04-29 09:02:17 · 66719 阅读 · 11 评论 -
【计算机视觉】轻量化模型设计:MobileNet、ShuffleNet与EfficientNet
轻量化模型设计:MobileNet、ShuffleNet与EfficientNet,人工智能、大模型、AI深度学习在计算机视觉领域取得了令人瞩目的进展,而MobileNet、ShuffleNet 和 EfficientNet 是轻量化模型领域的代表性成果,它们各自从不同角度对模型结构进行了创新,为在资源有限的情况下实现高性能的视觉任务提供了有效的解决方案。本文将深入探讨这三种轻量化模型的架构设计、核心概念、代码实现以及它们在实际应用中的表现和优势。原创 2025-04-28 08:55:14 · 69631 阅读 · 30 评论 -
【计算机视觉】Transformer在视觉中的崛起:ViT、DETR与Swin Transformer
Transformer在视觉中的崛起:ViT、DETR与Swin Transformer,人工智能、大模型、AI深度学习在计算机视觉领域取得了令人瞩目的进展,从早期的卷积神经网络(CNN)主导,到近年来 Transformer 架构的异军突起,彻底改变了视觉任务的格局。Transformer 最初在自然语言处理(NLP)领域大放异彩,以其出色的捕捉长距离依赖关系的能力而闻名。随着研究的深入,研究者们开始探索将 Transformer 应用于视觉领域,这一尝试催生了一系列具有开创性的模型。原创 2025-04-22 08:52:37 · 80794 阅读 · 15 评论 -
计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析
计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析,人工智能、AI、计算机视觉领域中,目标检测是一项至关重要的任务,其旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。从安防监控中的人员检测,到自动驾驶中的行人、车辆识别,目标检测技术都有着广泛的应用。在众多目标检测算法中,R-CNN、YOLO 和 SSD 具有代表性,它们各自有着独特的设计理念和技术路线,在不同场景下展现出不同的性能表现。本文将深入剖析这三种算法,通过原理阐述、性能对比以及代码示例,帮助读者全面理解它们的特点与差异。原创 2025-04-21 17:06:03 · 81460 阅读 · 14 评论 -
计算机视觉卷积神经网络CNN架构设计指南:如何构建高效的视觉模型?
计算机视觉CNN架构设计指南:如何构建高效的视觉模型?人工智能、大模型、AI、计算机视觉领域,卷积神经网络(Convolutional Neural Network,CNN)已成为主导性的模型架构。从图像分类到目标检测,从语义分割到图像生成,CNN 展现出了强大的性能。构建一个高效的 CNN 视觉模型,不仅需要对其基本原理有深入理解,还需要掌握一系列架构设计技巧。本文将详细探讨如何构建高效的 CNN 视觉模型,涵盖从基础概念到复杂架构设计的各个方面,并通过丰富的代码示例帮助读者更好地理解和实践。原创 2025-04-20 15:25:41 · 85500 阅读 · 29 评论 -
计算机视觉深度学习在CV中的应用:从AlexNet到Vision Transformer
计算机视觉深度学习在CV中的应用:从AlexNet到Vision Transformer,人工智能、AI、大模型、计算机视觉(CV)作为人工智能领域的重要分支,旨在让计算机理解和解释图像或视频中的内容。深度学习的出现,为计算机视觉带来了革命性的进展。从早期的 AlexNet 打破传统计算机视觉方法的局限,到如今 Vision Transformer 引领新的研究方向,深度学习模型不断推动着 CV 技术在图像分类、目标检测、语义分割等任务上取得突破。原创 2025-04-18 08:24:00 · 92335 阅读 · 30 评论 -
计算机视觉中的优化算法:从梯度下降到反向传播
计算机视觉中的优化算法:从梯度下降到反向传播,人工智能、大模型、AI、计算机视觉作为人工智能领域的重要分支,旨在让计算机理解和解释图像或视频中的内容。在实现这一目标的过程中,优化算法起着核心作用。优化算法的任务是调整模型的参数,使得模型在给定的任务(如图像分类、目标检测等)上表现最佳。本文将深入探讨计算机视觉中常用的优化算法,从基础的梯度下降算法开始,逐步过渡到强大的反向传播算法,并通过丰富的代码示例帮助读者更好地理解和应用这些算法。原创 2025-04-17 13:21:05 · 87069 阅读 · 14 评论 -
计算机视觉相机模型与标定:如何让计算机“看懂”三维世界?
计算机视觉相机模型与标定:如何让计算机“看懂”三维世界?,计算机视觉、机器视觉、人工智能、AI在计算机视觉领域,让计算机 “看懂” 三维世界是一个核心目标。相机作为获取图像数据的关键设备,其模型与标定对于准确理解和解释现实世界中的场景至关重要。通过构建合适的相机模型以及精确的标定过程,我们能够将二维图像中的信息与三维世界中的真实物体建立联系,为后续的目标检测、识别、三维重建等任务奠定坚实基础。原创 2025-04-16 08:30:20 · 98733 阅读 · 34 评论 -
计算机视觉图像分割入门:阈值、区域生长与分水岭算法
计算机视觉图像分割入门:阈值、区域生长与分水岭算法,人工智能,AI,图像分割,机器视觉在当今数字化的时代,计算机视觉技术正以前所未有的速度改变着我们的生活。从智能手机中的人脸识别解锁,到自动驾驶汽车的环境感知,再到医学影像分析中的疾病诊断,计算机视觉无处不在。而在这众多令人惊叹的应用背后,图像分割技术无疑是其中的关键基石之一。原创 2025-04-14 10:13:08 · 99954 阅读 · 53 评论 -
计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet
计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet,在计算机视觉领域,卷积神经网络(Convolutional Neural Network,CNN)已然成为推动众多任务发展的核心力量。从早期简单的图像识别,到如今复杂的目标检测、语义分割、图像生成等任务,CNN 都展现出了卓越的性能。CNN 的发展历程见证了一系列经典模型的诞生,其中 LeNet 作为开山之作,为 CNN 的发展奠定了基础,而 ResNet 则通过创新性的设计,突破了传统神经网络的限制,使得网络能够构建得更深、性能更优。原创 2025-04-11 15:06:34 · 114875 阅读 · 18 评论 -
计算机视觉图像特征提取入门:Harris角点与SIFT算法
计算机视觉图像特征提取入门:Harris角点与SIFT算法,在计算机视觉领域,图像特征提取是一项至关重要的基础任务。它旨在从图像中提取具有代表性和独特性的信息,这些信息能够帮助计算机理解图像内容,为后续的目标识别、图像匹配、图像分割等高级任务提供有力支持。Harris 角点和 SIFT(尺度不变特征变换)算法作为经典的图像特征提取方法,在学术界和工业界都得到了广泛应用。Harris 角点能够有效地检测出图像中的角点特征,这些角点往往是图像中物体形状的关键转折点,蕴含着丰富的结构信息。原创 2025-04-11 15:06:09 · 115761 阅读 · 19 评论 -
计算机视觉色彩空间全解析:RGB、HSV与Lab的实战对比
计算机视觉色彩空间全解析:RGB、HSV与Lab的实战对比,在计算机视觉领域,准确理解和处理颜色信息至关重要。色彩空间作为定义颜色的数学模型,为我们提供了不同的方式来描述和操作颜色。常见的色彩空间有 RGB、HSV 和 Lab 等,它们各自具有独特的特性和应用场景。本文将深入探讨这三种色彩空间,通过详细的原理讲解、丰富的代码示例以及实际应用场景的对比,帮助读者全面掌握它们在计算机视觉中的应用。原创 2025-04-11 15:04:35 · 115251 阅读 · 17 评论 -
计算机视觉中的数学:几何变换与矩阵运算详解
计算机视觉中的数学:几何变换与矩阵运算详解,计算机视觉致力于让计算机模拟人类视觉系统,理解和解释图像与视频中的内容。在这一复杂的领域中,数学作为核心驱动力,为各种算法和技术提供了坚实的理论基础。几何变换和矩阵运算贯穿于计算机视觉的众多任务,从图像的预处理、特征提取到目标识别与追踪等,它们帮助我们对图像中的物体进行位置、形状和方向的调整与分析,实现对视觉场景的精确理解和处理。原创 2025-04-09 09:16:56 · 122054 阅读 · 50 评论 -
计算机视觉图像处理基础系列:滤波、边缘检测与形态学操作
计算机视觉图像处理基础系列:滤波、边缘检测与形态学操作,计算机视觉是人工智能领域的核心方向之一,旨在让计算机具备理解和解释视觉信息的能力。而图像处理则是计算机视觉的基石,为后续的特征提取、目标识别、图像分割等高级任务提供数据基础。滤波、边缘检测与形态学操作作为图像处理的基础环节,各自发挥着独特且关键的作用。滤波用于改善图像质量,去除噪声或增强特定特征;边缘检测聚焦于提取图像中物体的轮廓信息;形态学操作则基于图像形状对其进行优化与处理。深入理解这些基础技术,对于掌握计算机视觉的核心知识体系至关重要。原创 2025-04-05 16:27:04 · 139658 阅读 · 96 评论 -
OpenCV从零开始:30天掌握图像处理基础
OpenCV从零开始:30天掌握图像处理基础,计算机视觉是人工智能领域的核心方向之一,旨在让计算机具备理解和解释视觉信息的能力。本文以 30 天学习计划为主线,结合 Python 代码与实战案例,系统讲解 OpenCV 图像处理核心技术。从环境搭建到高级应用,涵盖图像读取、几何变换、特征提取、视频处理等模块,助您快速上手计算机视觉开发。原创 2025-04-03 12:45:42 · 148056 阅读 · 86 评论 -
计算机视觉入门:从像素到理解的旅程
计算机视觉入门:从像素到理解的旅程,计算机视觉是人工智能领域的核心方向之一,旨在让计算机具备理解和解释视觉信息的能力。本文以系统化的知识框架,结合 Python 代码与经典案例,带您从像素级操作逐步掌握计算机视觉核心技术。涵盖图像处理、特征工程、传统机器学习到深度学习模型,助您构建从基础到进阶的完整能力体系。原创 2025-04-01 11:00:10 · 156106 阅读 · 82 评论