记录一次模型训练-测试-部署过程

本文记录了一次深度学习模型的训练、测试和部署全流程。从修改配置文件开始,详细介绍了训练过程中的GPU监控、模型选择、训练日志解析。接着,对模型进行测试,包括静态测试和真实场景下的field_test,选择最佳阈值。最后,模型被转化为.tflite文件并进行性能验证,同时提供了模型的可视化和C文件转换,以便于实际部署。
摘要由CSDN通过智能技术生成

Train

  • copy一份之前已有的main和pre的cfg文件和commands文件到新建目录。0414目录是之前训练时候使用的目录,该目录下除main.cfg、pre.cfg、commands外的其他文件都是训练过程中产生的,因此不需要拷贝。

  • 修改main.cfg和pre.cfg、commonds文件

1、修改data路径

2、修改train参数:

start_checkpoint  -- 需要改成上次训练得到的最佳checkpoint文件。

         train_dir -- 改成新创建的用于保存训练log和结果的目录 0608

对pre.cfg的修改如下:

         这里的修改需要注意的是:如果start_checkpoint改成相对路径如(~/project/***)会出现找不到需要的文件的错误。

3、修改commonds文件

  • 修改cmd2sh.py脚本,修改train.py的路径为该脚本在自己环境中的位置。还要修改自己的conda.sh的路径,激活训练环境需要的conda env。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值