自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(63)
  • 资源 (2)
  • 收藏
  • 关注

原创 git使用记录学习

文章目录一、Git使用基本操作二、 远程仓库中分支存在三、git 为什么要先commit,然后pull,最后再push?而不是commit然后直接push?一、Git使用基本操作配置环境:1、通过git init命令把某个目录变成Git可以管理的仓库;2、生成公钥秘钥:ssh key ssh-keygen -t rsa -C “for example@163.com”(邮箱)3、在GitHub的Setting中配置公钥3、 关联远程gith的用户名和邮箱$ git config --globa

2021-01-29 15:39:10 368 2

原创 markdown编辑器记录学习

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2020-10-24 17:16:47 669 1

原创 隐马尔科夫模型的概述-jieba应用

文章目录1.概述2.理论描述2.1 HMM五元组2.2 HMM三个基本问题及三个假设2.3 解决问题算法3 整体过程3.1 简单的分词过程4.应用方式4.1 简单的中文分词4.2 词性标注问题5.jieba分词中的HMM5.1 中文分词的介绍6.应用代码1.概述  隐马尔可夫模型(HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型,被认为是解决大多数自然语言处理问题最快速、有效的方法;20世纪70年代被应用在语音处理上,后被广泛应用在汉语自动分词、词性标注

2020-07-30 14:14:37 1319

原创 pycharm软件的快捷操作

pycharm常用快捷键与设置pycharm高频率使用的快捷键Ctrl+Shift+F10 运行当前的页面Ctrl + / 注释(取消注释)选择的行Ctrl+Shift+F 高级查找Shift + Enter 开始新行TAB Shift+TAB 缩进/取消缩进所选择的行Ctrl + Y 删除当前插入符所在的行Ctrl + D 复制当前行、或者选择的块Ctrl + Shift + J 合并行Delete 删除到字符结尾Backspace 删除到字符的开始Ctrl + NumPad+/-

2020-06-03 11:13:20 308

原创 小目标检测:微小目标的精准感知之道

《小目标检测的技术挑战与前沿进展》摘要 小目标检测是计算机视觉领域的关键挑战,其应用场景涵盖无人机巡检、医疗影像分析、自动驾驶等多个领域。核心难题包括特征湮灭(32倍下采样后目标信息丢失)、标注困境(极小目标标注困难)和评估偏差(传统指标易被大目标主导)。当前主流解决方案融合15项前沿技术:高分辨率输入与智能缩放、动态多尺度训练、增强型特征金字塔(如BiFPN)、轻量注意力机制等。2023-2024年突破性进展包括Transformer架构优化(DeformableDETR)、自监督预训练(MAE)和多模态

2026-02-10 08:30:00 1200

原创 YOLO26 重磅发布:性能翻倍!更快更强更轻量的目标检测新标杆

YOLO26发布:突破性边缘AI视觉模型 摘要:Ultralytics最新发布的YOLO26模型带来了四大创新:1)原生端到端设计彻底摒弃NMS后处理;2)移除DFL模块简化部署流程;3)首创MuSGD优化器实现稳定训练;4)增强损失函数提升小目标检测。该模型在CPU上实现43%的速度提升,支持目标检测、分割等六大视觉任务,特别优化了边缘设备部署,通过统一框架降低应用门槛。YOLO26的革新设计使其在机器人、智能制造等领域展现强大潜力,标志着实时目标检测技术的重要突破。

2026-01-16 08:30:00 567

原创 桥梁缺陷检测识别系统

本文介绍了一种基于YOLOv8/YOLOv10深度学习模型的桥梁缺陷检测识别系统。该系统针对传统人工检测效率低、主观性强、安全性差等问题,通过智能装备采集数据,结合深度学习算法实现8类桥梁缺陷(如腐蚀、裂缝等)的自动识别与量化分析。系统支持图片、视频及实时摄像头检测,检测准确率达95%,效率较人工提升5-10倍。应用场景涵盖定期巡检、危桥专项检测、大型桥梁实时监测等,可有效保障桥梁运营安全,降低30%以上运维成本。文中详细阐述了模型训练过程、评估指标及系统功能演示,为桥梁智能化运维提供了有效解决方案。

2026-01-12 08:30:00 1230

原创 高效!YOLO+SAM 目标检测与图像分割融合实战

本文介绍了YOLO与SAM模型的融合应用,通过YOLO实现高效目标检测,再借助SAM进行精准图像分割。文章详细阐述了二者的协同优势:YOLO快速定位目标区域,SAM基于检测框提示完成像素级分割,形成"检测+分割"的完整流程。同时提供了从环境配置到核心代码实现的完整指南,包括模型加载、检测框转换、分割执行及结果可视化等关键步骤。该方案适用于工业质检、自动驾驶等多个场景,兼顾效率与精度,无需复杂训练即可实现端到端的视觉分析解决方案。

2026-01-06 15:54:49 1125

原创 2024-2025 视觉目标跟踪前沿算法全景解析

本文总结了2024-2025年视觉目标跟踪领域的前沿算法发展。在多模态融合方面,自适应选择性融合算法和EventTrack++通过动态模态筛选和事件相机融合提升了复杂环境下的跟踪性能。基础模型赋能的MASA和SAM-Track++利用SAM实现了零标注学习和自动交互式跟踪。Transformer架构优化的TransTRDT和LiteTrack则通过动态模板更新和轻量化设计平衡了精度与效率。技术趋势呈现模态泛化、标注减负和端侧部署三大方向,但仍面临跨模态对齐、长时跟踪鲁棒性和实时性平衡等挑战。文章还针对不同工

2025-12-03 08:30:00 989

原创 视觉目标分割算法:起源、分支演进与前沿全景综述

目标分割算法发展综述 目标分割技术历经半个世纪发展,从1970年代的边缘检测算子到2025年的通用分割大模型,实现了从"区域划分"到"像素级语义解析"的跨越。早期研究(1970s-2015)主要依赖手工特征和传统机器学习,2015年后深度学习推动技术快速发展,形成语义分割、实例分割、全景分割和视频目标分割四大分支。2024-2025年前沿算法如SegGPTv2、Mask2Formerv3等展现出基础模型赋能下的精度与泛化突破,XMemv2解决了长视频分割的工程化瓶颈。

2025-12-01 08:30:00 666

原创 视觉目标检测算法:起源、演进与前沿全景综述(更新版)

本文系统梳理了目标检测算法的发展历程与技术演进。从1960年代的手工特征方法到深度学习的范式革新,目标检测已形成两阶段检测(如Faster R-CNN)、单阶段检测(如YOLO系列)、Anchor-Free检测(如FCOS)和3D目标检测(如BEVFormer)四大核心分支。2024-2025年前沿算法在实时性(YOLOv12达57.1% mAP/32FPS)、多模态融合(SAM-Det零样本检测)和边缘部署(Lite-YOLOv12参数量减少78%)等方面取得突破。未来将聚焦开放世界检测、跨模态融合和端侧

2025-11-17 08:00:00 1568

原创 风力发电机智能检测系统:高效识别四类关键设施

基于YOLO的风力发电机多类设备检测系统研究 摘要:本研究针对风电场复杂场景下天线、烟囱、电力线和风力涡轮机四类关键设备的检测需求,提出了一种基于YOLO系列算法的深度学习检测系统。通过改进网络结构(融合多尺度特征金字塔与注意力机制)和优化数据增强策略,系统在6844张风电场景图像数据集上实现了92%的平均检测准确率,mAP@0.5指标较传统方法提升12.6%,同时保持毫秒级处理速度。该系统支持无人机巡检、固定监控等多种应用场景,显著提升了风电设备的运维效率和安全性,为智能化风电场建设提供了有效技术方案。(

2025-07-02 08:00:00 1072

原创 基于YOLOV5、YOLOv8的水果新鲜程度检测识别

基于 YOLOV5 和 YOLOv8 的水果新鲜程度检测识别研究,通过构建水果图像数据集['fresh apple', 'fresh banana', 'fresh mango', 'fresh orange', 'fresh strawberry', 'rotten apple', 'rotten banana', 'rotten mango', 'rotten orange', 'rotten strawberry'],涵盖从成熟到腐烂各阶段的水果图片,为模型训练提供丰富数据资源。

2025-06-22 08:00:00 2055

原创 基于 YOLOv8、YOLOv10 的水果蔬菜检测识别系统:开启智慧果蔬管理新时代

摘要:基于YOLOv8和YOLOv10的水果蔬菜检测识别系统为农业智能化管理提供了高效解决方案。该系统采用深度学习技术,构建包含24类果蔬的数据集,覆盖全生命周期特征。实验表明,YOLOv8在果蔬品类区分和新鲜度判断上表现优异,mAP达0.83,检测速度30+FPS。系统支持图片、视频和实时摄像头检测,具备热力图可视化、自动统计等功能,已在农业生产、仓储物流和零售场景中实现10-20倍的效率提升。相比传统人工检测,该系统准确率超过90%,可降低60%人工成本,为农产品质量监控提供了完整的技术方案。

2025-06-18 10:08:11 1567

原创 工业相机镜头焦距与传感器尺寸对拍摄效果的影响

工业相机镜头焦距与传感器尺寸对拍摄效果的影响主要体现在:成像尺寸由传感器尺寸决定,与焦距无关;而视野范围和物体放大倍率则取决于镜头焦距,短焦距(如6mm)能拍摄更大范围但物体较小,长焦距(如8mm)视野窄但物体更大。应用时需根据需求选择组合,大面积检测用短焦距+大传感器,精细检测用长焦距+小传感器。

2025-06-05 15:29:46 807

原创 基于yolov5、yolov8的木材缺陷检测识别系统

本文提出了一种基于YOLOv5/YOLOv8深度学习的木材缺陷检测系统,用于自动识别木材表面常见缺陷(如干节、健全节、裂纹等6类)。该系统使用3785张标注图像训练模型,在验证集上达到95%的mAP@0.5准确率。开发了支持图片、视频和实时摄像头检测的交互界面,可实现缺陷定位、分类和结果保存功能。相比传统人工检测方法,该系统显著提升了检测效率和准确性,可应用于木材加工生产线、质量分级等场景,推动木材行业智能化升级。论文提供了完整的代码实现和训练细节。

2025-05-28 08:00:00 1278

原创 番茄成熟度智能检测:YOLO算法大比拼

基于深度学习的番茄成熟度智能检测系统研究 摘要:本研究开发了一套基于YOLO系列算法的番茄成熟度智能检测系统。系统采用3465张番茄图像数据集,训练了能够识别6种成熟度状态(包括叶病、半熟、过熟、成熟、腐烂和未成熟)的深度学习模型。研究对比分析了YOLOv5、YOLOv8和YOLOv10三种模型在验证集上的性能表现,其中YOLOv10通过消除非最大抑制需求等技术优化,展现出最佳性能(mAP@0.5达0.95)。最终实现的系统支持图片、视频及摄像头实时检测,并具备检测结果保存功能,为农业生产中的番茄采收、分选

2025-05-25 17:02:16 1130

原创 基于yolov8、yolov10、yolov11的道路车辆种类检测识别系统

随着交通流量的增加,道路车辆检测与识别技术的重要性日益提升。本文基于YOLOv8、YOLOv10和YOLOv11深度学习框架,设计并实现了一套道路车辆检测识别系统。通过23078张日常维修工具图片训练模型,系统能够检测11种车辆类别,包括汽车、公交车、卡车等。文章对比了YOLOv8n、YOLOv10n和YOLOv11在验证集上的性能表现,并开发了带UI界面的检测系统,支持图片、视频和摄像头输入,检测结果可保存。系统基于Python 3.8.10和PySide6开发,提供了完整的代码和使用教程,便于学习和参考

2025-05-22 08:00:00 1261

原创 视觉系统大作战:构建完美视觉的实战技巧

在当今高度自动化的工业生产领域,机器视觉技术宛如一颗璀璨的明珠,正发挥着不可替代的关键作用。想象一下,在一条高速运转的电子产品生产线上,一个个微小的零部件在精密的机械手中有序组装,而确保每一个零部件都精准无误地安装到位的,正是机器视觉系统那如同 “智慧之眼” 般的精准感知和判断能力。机器视觉,简单来说,就是让机器拥有类似人眼的视觉功能,能够对。它作为现代工业自动化的重要组成部分,正深刻地改变着传统工业生产模式。

2025-02-20 10:49:52 1026

原创 YOLOV5网络目标检测实践

问题现象解决方案减小 --batch-size,增加 --img-size训练 loss 不下降检查数据标注质量,调整学习率(--lr0)验证 mAP 低增加训练数据量,调整数据增强策略推理速度慢使用更小模型(yolov5n/s),启用 TensorRT类别不平衡使用 --weights 加载预训练模型,调整损失权重。

2025-02-13 20:45:00 1047

原创 104页 | 清华出品DeepSeek教程!(包含相关资料可下载)

公司专注于开发高效、低成本的AI模型,强调算法创新与开源策略,其模型性能对标国际头部产品(如OpenAI),但研发成本仅为行业平均的零头(约600万美元)。文档的核心内容围绕DeepSeek的技术特点、应用场景、使用方法以及如何通过提示语设计提升AI使用效率等方面展开,帮助用户从入门到精通DeepSeek的使用。主要成就 模型突破:推出DeepSeek-R1(纯强化学习驱动的推理模型)和DeepSeek-V2(多语言预训练模型),后者因“极致性价比”引发行业关注,并登顶全球多个应用市场下载榜。

2025-02-12 15:04:13 521

原创 数据集赋能智慧管理

数据集展示各种

2025-01-22 10:57:08 306

原创 Ubuntu 20.04下MySQL 8.4.3 LTS离线安装全攻略

本文详细阐述了在Ubuntu 20.04操作系统上离线安装MySQL 8.4.3 LTS版本的全过程。文章首先介绍了环境配置和前期准备工作,确保系统具备安装MySQL所需的各项条件。接着,指导用户如何下载MySQL的安装包,并将其上传到目标服务器上。文章详细说明了用户与权限的设置步骤,确保MySQL服务能够以正确的用户身份运行,同时保障系统的安全性。随后,逐步介绍了MySQL的安装与配置过程,包括如何解压安装包、设置配置文件、初始化数据库等关键步骤。

2025-01-10 17:10:54 1513

原创 基于深度学习的维修工具检测识别系统

在机械的交响与电子的脉冲交织的工业及生活场景里,设备的正常运转宛如稳固的基石,支撑着生产的高效推进与生活的便捷有序。而维修工具,无疑是工匠们手中紧握的 “魔法棒”,挥动间决定着故障能否被精准驱散。但这根 “魔法棒” 自身若失准、带伤,那修复的愿景便可能沦为泡影,甚至引发新的混乱。日常维修涵盖的范畴极广,小到家庭电路跳闸后简易电笔对保险丝的排查,大至工厂流水线复杂机械故障时各类扳手、量具对关键部件的拆解与测量;电子设备维修中,精密螺丝刀用以拆解手机主板探寻芯片虚焊,汽车养护时套筒扳手拆卸轮胎螺母保障行车安全。

2025-01-08 08:30:00 1126 1

翻译 FoundationPose复现及Realsense应用

FoundationPose是一个统一的基础模型,用于6D对象姿态估计和跟踪,支持基于模型和无模型的设置。在测试时可以立即应用于未见过的新对象,无需微调,只要给出其CAD模型,或者捕获少量RGBD参考图像。得益于统一框架,下游姿态估计模块在两种3D模型设置中都是相同的,当没有CAD模型时,使用神经隐式表示进行高效的新视角合成。通过大规模合成训练,辅以大型语言模型(LLM)、一种基于transformer的新架构和对比学习公式,实现了强大的泛化能力。

2024-12-17 17:00:00 808

原创 基于深度学习的交通标志智能检测识别系统

基于深度学习,训练了一个进行交通标志智能检测与识别的目标检测模型并基于此模型开发了一款带UI界面的交通标志智能检测与识别系统,可用于实时检测场景中的不同交通标志,更方便进行功能的展示。该系统是基于python3.8.10与pyside6开发的,支持图片、视频以及摄像头进行目标检测,并保存检测结果。

2024-10-24 08:30:00 2395

原创 基于深度学习的番茄叶疾病检测识别系统

支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置、目标总数、置信度、用时等信息;支持图片或者视频的检测结果保存;通过网络上搜集关于实际场景中番茄叶疾病的相关图片,并使用Labelimg标注工具对每张图片进行标注,分7个检测类别,分别是[] 最终数据集一共包含700多张图片,其中训练集包含645张图片,验证集包含61张图片,测试图片31张。部分图像及标注如下图所示:YOLO(You Only Look Once)是一种流行的计算机视觉算法,用于实现实时对象检测。

2024-09-25 17:38:26 2479

原创 基于YOLOv8/YOLOv9/YOLOv10的河道漂浮物检测识别系统

支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置、目标总数、置信度、用时等信息;支持图片或者视频的检测结果保存;通过网络上搜集关于实际场景中水上目标物的相关图片,并使用Labelimg标注工具对每张图片进行标注,分8个检测类别,分别时[] 最终数据集一共包含2400张图片,其中训练集包含1920张图片,验证集包含240张图片,测试图片240张。部分图像及标注如下图所示:YOLO(You Only Look Once)是一种流行的计算机视觉算法,用于实现实时对象检测。

2024-09-20 15:30:00 2484

原创 基于YOLOv8/YOLOv9/YOLOv10的河道漂浮物检测识别系统

支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置、目标总数、置信度、用时等信息;支持图片或者视频的检测结果保存;通过网络上搜集关于实际场景中水上目标物的相关图片,并使用Labelimg标注工具对每张图片进行标注,分8个检测类别,分别时[] 最终数据集一共包含2400张图片,其中训练集包含1920张图片,验证集包含240张图片,测试图片240张。部分图像及标注如下图所示:YOLO(You Only Look Once)是一种流行的计算机视觉算法,用于实现实时对象检测。

2024-09-20 15:00:00 1751

原创 基于YOLOv8/YOLOv9/YOLOv10的水面目标检测识别系统

可用于实际场景中水面目标物检测,分为14个检测类别:["bridge", "ship", "boat", "ball", "rubbish", "rock", "buoy", "platform", "habor", "mast", "tree", "animal", "grass", "person"]支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置、目标总数、置信度、用时等信息;支持图片或者视频的检测结果保存;

2024-08-17 08:00:00 3611

原创 YOLOV8网络目标检测解读实践

官方地址YOLOv8今天主要进行整个YOLOv8的项目的分析,包含整个项目结构介绍、环境安装部署、数据准备、训练验证预测的功能介绍。本篇博文提供了一个关于使用YOLOv8进行目标检测的全面指南,结合另有一篇博文网络的深度理解更好的学习yolov8模型,主要包括环境搭建、模型训练、验证和预测的详细步骤,以及如何解释训练过程中生成的各种图表和数据。整篇文章为读者提供了YOLOv8整个工程结构的解读,之后从环境搭建,再到结果分析,每一部分都给出了详细的步骤和解释。

2024-07-31 08:00:00 1414

原创 YOLOv8网络理解

YOLOV8网络结构Yolov8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,主要借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,其本身创新点不多,偏重在工程实践上。YOLOv8的提出主要包括以下几个方面的改进:提供了一个全新的SOTA模型(包括P5 640和P6 1280分辨率的目标检测网络和基于YOLACT的实例分割模型)。并且,基于缩放系数提供了N/S/M/L/X不同尺度的模型,以满足不同部署平台和应用场景的需求。

2024-07-24 08:15:00 4849 1

原创 目标检测的理解

目标检测一些相关知识

2024-07-18 17:34:38 1946

原创 基于YOLOV8结合LPRNet的复杂道路环境下车牌识别检测系统

本文尝试了利用深度学习技术开发一个先进的车牌检测系统,并附上了完整的实现代码。系统核心采用了强大的YOLOv8及LPRNet算法,包括mAP和F1 Score等关键指标的对比分析。文章深入探讨了YOLOv8的基础理论,并提供了相关的Python代码以及用于训练的数据集,增加了基于PySide6的直观用户界面(UI)以提升用户体验。该检测系统能够高效识别和分类图像中的各类车牌,支持从静态图片、图片集、视频文件以及实时摄像头输入进行检测。特色功能包括目标标注框、类别统计、可调节的置信度和IOU阈值、以及结果的可

2024-07-17 08:00:00 2062

原创 目标检测任务简介

目标检测是计算机视觉中的一个重要分支,其核心目的是在给定的图像或视频帧中自动识别并定位出特定类型的物体。这一任务不仅要求系统能够识别图像中存在哪些物体(物体分类),还要精确地确定每个物体的位置,通常通过绘制出包围该物体的矩形框(Bounding Box)来实现。目标检测是许多高级视觉应用的基础,包括但不限于自动驾驶、视频监控、图像检索、医疗影像分析、增强现实和机器人导航等。主要组成部分:确定图像中的物体属于哪一个预定义的类别。估计物体在图像中的精确位置,通常通过输出物体的边界框坐标。

2024-06-11 16:16:03 507

原创 基于YOLOV8/YOLOV5的远距离停车场车位检测识别系统

本文中深入探讨一个为远距离停车位检测系统设计的数据集。本数据集包括了高分辨率的航拍图片,共计12416张,其中训练集包含8691张图片,验证集包含2483张图片,测试集包含1242张图片。Chinese_name = {'space-empty': "空车位", 'space-occupied': "已泊车"}数据集的多样性是通过收集不同环境下的停车场景来实现的,包括室内外、不同天气和光照条件下的停车位。每个停车位都经过了精确的标注,标签包括“空闲”和“占用”两个状态,反映了其实际使用情况。

2024-05-29 09:55:34 1535

原创 基于YOLOV8/YOLOV5的PCB板缺陷检测识别系统

在现代电子制造业中,印刷电路板(PCB)作为电子产品的核心组件,其质量对于最终产品的可靠性和稳定性至关重要。随着电子技术的不断进步,对PCB的质量要求也日益严格,使得PCB板缺陷检测成为保障产品质量的关键环节。传统的PCB缺陷检测主要依赖于人工视觉检查和基于规则的自动化方法。然而,这些方法存在效率低下、成本高昂以及难以满足日益提高的检测精度和可靠性要求等问题。因此,随着深度学习技术的快速发展,其在PCB缺陷检测领域的应用逐渐成为研究的热点。

2024-05-24 17:19:11 2160

原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的草莓成熟度检测系统(深度学习模型+UI界面+Python代码+训练数据集)

在当今的农业生产与食品加工行业中,确实,提高产品质量控制的精确度和效率是至关重要的。特别是对于草莓这种广受欢迎的水果,其成熟度直接影响到果实的口感、营养价值以及市场价值。草莓成熟度的评估涉及多个因素,如色泽、大小、形态等,这使得传统的依赖人工经验的检测方法存在许多局限性。传统方法的主要问题是耗时耗力且主观性强。人工检测草莓的成熟度往往依赖于个人的经验,这导致了评估结果的不一致性和不准确性。此外,随着生产规模的扩大,人工检测的效率问题也日益凸显。

2024-05-21 10:28:29 2363

原创 深入理解 transformer

注意力是一种概念,有助于提高神经机器翻译应用的性能。在本文中,我们将讨论 Transformer——一种使用注意力来提高这些模型训练速度的模型。Transformer 在特定任务中优于 Google 神经机器翻译模型。然而,最大的好处来自于 Transformer 如何适应并行化。事实上,Google Cloud 建议使用 Transformer 作为参考模型来使用他们的 Cloud TPU 产品。因此,让我们尝试分解该模型并查看其如何工作。

2024-04-17 14:06:16 990

原创 海洋生物训练数据简介

水下生物四类;海参“holothurian”,海胆“echinus”,扇贝“scallop”和海星“starfish”四类 可能存在水草“waterweeds”这一类别;训练图片6575张,测试图片1200张;

2024-04-17 11:48:15 377 1

SAM 3模型参数,使用参数,SAM 3: 用概念分割万物

SAM 3 (Segment Anything Model 3) 是 Meta 发布的用于 可提示概念分割 (PCS) 的基础模型。在 SAM 2 的基础上,SAM 3 引入了一项全新的能力:detect、segment 和 track 通过文本提示、图像示例或两者指定的 所有实例。与之前每个提示分割单个对象的 SAM 版本不同,SAM 3 可以在图像或视频中找到并 segment 概念的每一次出现,这与现代 实例分割 中的开放词汇目标保持一致。 SAM 3 现已完全集成到 ultralytics 包,提供对概念 segment 的原生支持,支持文本提示、图像示例提示以及视频 track 功能。 SAM 3 在可提示概念分割方面比现有系统实现了 2 倍的性能提升,同时保持并改进了 SAM 2 在交互式 视觉分割方面的能力。该模型擅长开放词汇分割,允许用户使用简单的名词短语(例如,“黄色校车”、“条纹猫”)或提供目标对象的示例图像来指定概念。这些功能补充了依赖于简化 预测 和 跟踪 工作流的生产就绪管道。

2026-01-06

数据处理,label转换为关键点标注格式

数据处理,label转换为关键点标注格式,主要为labelme标准,进行转换为关键点标注格式,方案脚本处理数据集,方便计算机视觉训练

2025-07-01

方案json格式数据集转为txt

python 处理 主要针对计算机视觉目标检测项目数据集的处理,方案json格式数据集转为txt,使用脚本

2025-07-01

yolov12的预训练基础模型

新版yolov12的目标检测,主要包含基础预训练模型。可在此基础上进行重新训练检测,目标检测识别

2025-03-19

YOLOv5-v7.0-weights 模型权重汇总,主要用于检测预训练

YOLOv5-v7.0-weights 模型权重汇总,主要用于检测预训练

2025-03-19

yolov5-5.0版本的基础模型权重汇总

yolov5-5.0版本的基础模型权重汇总,主要用于检测模型预训练

2025-03-19

番茄病虫害数据集各种疾病害虫

标题和描述中提到的“番茄病虫害数据集”是一个专门针对番茄作物的病虫害图像集合,这对于农业研究人员、机器学习工程师以及农作物保护专家来说是一个宝贵的资源。这个数据集通常包含不同种类的番茄病害和虫害的高清图片,旨在帮助识别和研究这些疾病,以提高农业生产效率和质量。 在农业领域,识别病虫害是至关重要的,因为它们能够严重影响番茄的生长和产量。数据集中的每一张图片可能代表一种特定的病害或虫害,如早疫病、晚疫病、叶霉病、青枯病、螨类、蚜虫、红蜘蛛等。这些病虫害可能导致叶子变色、枯萎、果实腐烂等症状,严重时甚至导致整株植物死亡。 对于机器学习和计算机视觉领域的专家来说,这个数据集可以用于训练和测试图像识别算法。通过深度学习模型,如卷积神经网络(CNN),可以训练算法自动识别并区分不同的病虫害,从而实现自动化监测和预警系统。这将极大地提高病虫害管理的效率,减少农药的过度使用,同时确保番茄的品质和产量。 数据集中有两个子文件,"Tomato pest image enhancement.7z" 和 "Original image of tomato pest.7z",分别可能包含处理过的图像和原始

2024-09-12

脚本的转换py文件转换成pyc文件.md

脚本的转换py文件转换成pyc文件.md

2021-11-26

bge-base-zh-v1.5 模型

Embedding 模型换成 bge-base-zh-v1.5 模型,实现更好的文档匹配效果。 langchat+chatGLM中使用大的文本解析模型; bge-base-zh-v1.5 模型进行gpu上快速运行解析文档; 模型参数适中; 可在较小的gpu上运行; 可放入langchat工程中运行

2024-03-20

bge-large-zh.zip

基于大模型llm的知识库智能问答系统建立所使用的模型bge-large-zh+chatglm3-6b

2024-03-18

chatglm3-6b.zip

基于大模型llm的知识库智能问答系统建立所使用的模型bge-large-zh+chatglm3-6b

2024-03-18

数据结构的一些积累+插入排序

数据结构的一些积累+插入排序

2021-11-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除