Tensorflow2.0 的GPU安装步骤
Tensorflow2.1.0必备安装包
Tensorflow版本:tensorflow_gpu-2.1.0-cp37-cp37m-win_amd64.whl
cuDNN版本:cudnn-10.1-windows10-x64-v7.6.3.30.zip
CUDA版本:cuda_10.1.168_425.25_win10.exe
百度安装包提取:链接:https://pan.baidu.com/s/18xWNh1H9Hl4iNo336J4hBQ
提取码:4569
安装步骤
步骤一:安装CUDA 10.1
自定义安装选择
在自定义安装选项界面中,CUDA项勾选,其他项视情况而定
注意,若系统中未安装Visual Studio,CUDA组件中的Visual Studio Integration应去掉。
下一步,自己选择安装路径
等待安装完成
步骤二:安装cuDNN
(1) 解压cuDNN,会获得一个名为“cuda”的文件夹,为区分,将文件夹改名为"cudnn";
(2) 将文件夹整体复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 路径下:
(3) 配置环境变量:
“此电脑”>>右击鼠标>>“属性”>>“高级系统设置”>>“高级”选项卡下方,选择“环境变量”。打开后,选择“系统变量”中的Path,在安装完CUDA 10.1后,通常只包含两个路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp
需要将CUPTI和CUDNN的目录手动添加到环境变量,如下图,并调整至图中的位置:
步骤三:安装TensorFlow
安装命令:pip install tensorflow_gpu-2.1.0-cp37-cp37m-win_amd64.whl
测试安装是否成功
//测试是否安装成功
import tensorflow as tf
# 查看 TensorFlow 版本
print(tf.__version__)
# 查看 TensorFlow 是否可用GPU
print(tf.test.is_gpu_available())
结果如下:显示为true表示gpu安装成功。
关键点1:
一定要换源,不然很容易失败
关键点2:
GPU 版本,一定要下载与自己 TensorFlow 版本对应的 CUDA 和 cuDNN
参考文献:https://zhuanlan.zhihu.com/p/84782861