注意一个条件,ax*by!=bx*ay,所以每个点所需的每只手的次数是固定的,于是就可以转换为网格图(注意这里|坐标|<=500*500)中每次向上或向右走一步。因为障碍点较少,可以计算无法到达的方案数=先走到某一个障碍,再随便走。复杂度O(n*n)。
注意有一些无解的可能需要特判。//发现bzoj上使用cerr会返回RE 2333
#include<iostream>
#include<cstdio>
#include<algorithm>
#define P 1000000007
#define ll long long
using namespace std;
int Ex,Ey,n,ax,ay,bx,by,b[505],inv[1000005],p[1000005],cnt;
struct T
{
int x,y;
}a[505],t;
bool cmp(T a,T b)
{
return a.x!=b.x?a.x<b.x:a.y<b.y;
}
int C(int x,int y)
{
if (x==0) return 1;
return (ll)p[y]*inv[y-x]%P*inv[x]%P;
}
int gcd(int x,int y)
{
return y?gcd(y,x%y):x;
}
T Get(int x,int y)
{
T ans;
if ((x*by-y*bx)%(ax*by-ay*bx)) return (T){666666666,666666666};
ans.x=(x*by-y*bx)/(ax*by-ay*bx);
if ((-x*ay+y*ax)%(ax*by-ay*bx)) return (T){666666666,666666666};
ans.y=(-x*ay+y*ax)/(ax*by-ay*bx);
if (ans.x<0||ans.y<0) return (T){666666666,666666666};
return ans;
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d%d",&Ex,&Ey,&n);
scanf("%d%d%d%d",&ax,&ay,&bx,&by);
p[0]=1;p[1]=1;inv[0]=1;inv[1]=1;
for (int i=2;i<=1000000;i++)
p[i]=(ll)p[i-1]*i%P,inv[i]=(ll)(-P/i)*inv[P%i]%P;
for (int i=2;i<=1000000;i++)
inv[i]=(ll)inv[i]*inv[i-1]%P;
//A*ax+B*bx=Ex
//A*ay+B*by=Ey
a[cnt=1]=Get(Ex,Ey);
if (a[1].x==666666666||a[1].x<0||a[1].y<0)
{
puts("0");
return 0;
}
for (int i=1,x,y;i<=n;i++)
{
scanf("%d%d",&x,&y);
t=Get(x,y);
if (t.x<=a[1].x&&t.y<=a[1].y) a[++cnt]=t;
}
sort(a+1,a+cnt+1,cmp);
for (int i=1;i<=cnt;i++)
{
//cerr<<a[i].x<<' '<<a[i].y<<endl;
b[i]=C(a[i].x,a[i].x+a[i].y);
//cout<<i<<' '<<b[i]<<endl;
//cerr<<b[i]<<endl;
for (int j=1;j<i;j++)
if (a[j].x<=a[i].x&&a[j].y<=a[i].y)
b[i]=(b[i]-(ll)b[j]*C(a[i].x-a[j].x,a[i].x+a[i].y-a[j].x-a[j].y)%P)%P;
}
printf("%d\n",(b[cnt]+P)%P);
//system("pause");
}