【题解】洛谷 P1044 [NOIP2003 普及组] 栈

文章讲述了如何利用动态规划解决卡特兰数问题,即计算给定数量的进栈和出栈操作组合的总数。通过递推关系c[i][j]=c[i-1][j]+c[i][j-1],并给出C++代码实现预处理求解。
摘要由CSDN通过智能技术生成

此题其实并不难。

其实就是卡特兰数

我们来讨论一下

c[i][j]表示有i个数已经进栈,有j个数已经出栈的方法总数

不难知道,由于进栈的每个数都不一样,所以c[n][m]就是我们要求的答案

和Cm,n类似

推理**看题解**得到,进栈的数的个数永远不小于出栈的个数

P.S.:鬼都知道

那么如果现在有i-1个数进栈,j个数出栈,不难发现,再入栈一个数就能得到i个数进栈,j个数出栈的状况

如果有i个数进栈,j-1个数出栈,不难发现,再出栈一个数就能得到i个数进栈,j个数出栈的状况

太棒了!!!!

我们已经得到了c[i][j]的公式为:

c[i][j]=c[i−1][j]+c[i][j−1]

是不是很棒呢?

那么预处理怎么做呢?

我们通过枚举看题解发现,i个数进栈,0个数出栈不是只有1种方法吗?

那么代码就好写多了。就是求卡特兰数的方法

#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
  int i,j;
  int n;
  cin>>n;
  long long c[19][19];
  for(i=0;i<=n;i++)
   c[0][i] = 1;
   for(i=1;i<=n;i++)
   for(j=i;j<=n;j++)
   {
     if(i==j) c[i][j] = c[i-1][j];
     else c[i][j] = c[i-1][j] + c[i][j-1];
   }
   printf("%d\n",c[n][n]);
   return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值