Let's Learn .NET|使用 Semantic Kernel 构建 Chat App

点击蓝字

关注我们

编辑:Alan Wang

排版:Rani Sun

Let's Learn .NET

Let's Learn .NET 是面向全球的 .NET 初学者学习系列,旨在通过不同语言,帮助不同地区的开发者掌握最新的 .NET 开发知识与技能。

如今,我们已经可以在各行业领域不同应用场景下使用 Semantic Kernel 轻松构建 AI Agent。在构建聊天应用程序时,Semantic Kernel 可以帮助我们进行文本分析和语义理解,从而提供更准确的响应与交互。

活动介绍

9月20日,新一期的 Let's Learn .NET ,我们将跟随微软高级云技术布道师卢建晖,围绕 Semantic Kernel,学习使用 .NET 构建 Chat App 应用程序。

活动时间:2024年9月20日 19:30 - 20:30

参与方式:报名后,在“上课方式”中获取

4c56c27223f247640db076c755037222.png

扫码报名参与

分享嘉宾

b33aea4094af24021e1df37a0f5a3c5d.jpeg

卢建晖 Kinfey Lo

微软高级云技术布道师

在 AI Core Team 负责小模型 Phi 3 在全球的技术内容推广,有超过18年的金融、电信、教育等领域的行业解决方案经验,专注在云原生、人工智能、大数据、物联网等领域。在 GenAI 领域著有围绕小模型的《Phi-3 Cookbook》(阅读量超过40万)和 Copilot 应用框架《Semantic Kernel Cookbook》,并为不同客户提供基于 LLMOps 和 SLMOps 的一体化解决方案。

主办方

c8f5a7a5ea54de008bf1292591afbe8c.png

微软 Reactor 是微软为构建开发者社区而提供的一个社区空间,以“予力多元化社区建设,帮助每一个开发者成就不凡”为使命,旨在通过不定期举办的技术讲座、开发者交流会面及技术沙龙和专题活动,帮助开发者和初创企业了解最新技术、学习最新知识、体验最新方案、结识业界同行、扩展职场人脉。

fb44fe036df93cd3441fbad5297a1721.gif

64c1e62d5c3389c286fe5885019a4ec8.jpeg

MSReactor

abe70b32a0ff3aed8015c56815bf420a.gif

扫码|关注我们

Bilibili|微软Reactor_SH

活动行|微软Reactor 上海

知乎|微软 Reactor

338448eedb6845b2016fe4789f332f51.gif

你们点点“分享”,给我充点儿电吧~

在电子设计自动化(EDA)领域,Verilog HDL 是一种重要的硬件描述语言,广泛应用于数字系统的设计,尤其是在嵌入式系统、FPGA 设计以及数字电路教学中。本文将探讨如何利用 Verilog HDL 实现一个 16×16 点阵字符显示功能。16×16 点阵显示器由 16 行和 16 列的像素组成,共需 256 个二进制位来控制每个像素的亮灭,常用于简单字符或图形显示。 要实现这一功能,首先需要掌握基本的逻辑门(如与门、或门、非门、与非门、或非门等)和组合逻辑电路,以及寄存器和计数器等时序逻辑电路。设计的核心是构建一个模块,该模块接收字符输入(如 ASCII 码),将其转换为 16×16 的二进制位流,进而驱动点阵的 LED 灯。具体而言,该模块包含以下部分:一是输入接口,通常为 8 位的 ASCII 码输入,用于指定要显示的字符;二是内部存储,用于存储字符对应的 16×16 点阵数据,可采用寄存器或分布式 RAM 实现;三是行列驱动逻辑,将点阵数据转换为驱动 LED 矩阵的信号,包含 16 个行输出线和 16 个列使能信号,按特定顺序选通点亮对应 LED;四是时序控制,通过计数器逐行扫描,按顺序控制每行点亮;五是复用逻辑(可选),若点阵支持多颜色或亮度等级,则需额外逻辑控制像素状态。 设计过程中,需用 Verilog 代码描述上述逻辑,并借助仿真工具验证功能,确保能正确将输入字符转换为点阵显示。之后将设计综合到目标 FPGA 架构,通过配置 FPGA 实现硬件功能。实际项目中,“led_lattice”文件可能包含 Verilog 源代码、测试平台文件、配置文件及仿真结果。其中,测试平台用于模拟输入、检查输出,验证设计正确性。掌握 Verilog HDL 实现 16×16 点阵字符显示,涉及硬件描述语言基础、数字逻辑设计、字符编码和 FPGA 编程等多方面知识,是学习
<think>好的,我需要回答用户关于Semantic Kernel的问题,特别是关于它的GitHub仓库和作为微软开源框架的信息。首先,我得回忆一下Semantic Kernel的基本概念,确保信息准确。Semantic Kernel是微软开发的一个开源框架,用于集成AI模型,比如大型语言模型(LLMs),到应用程序中。它支持多种编程语言,可能包括C#和Python,但需要确认。 接下来,用户提到了GitHub,所以必须提供正确的仓库链接。我需要查找微软官方的Semantic Kernel仓库,确保链接正确无误。通常微软的开源项目会放在GitHub的microsoft组织下,所以可能链接是github.com/microsoft/semantic-kernel。需要验证这一点。 然后,用户想了解它作为开源框架的特点。应该包括主要功能,比如插件架构、规划能力、与AI服务的集成,以及支持的模型类型,比如OpenAI、Azure OpenAI、Hugging Face等。还要提到支持的编程语言,例如C#、Python、Java,但需要确认最新的支持情况,可能Java还在测试阶段。 另外,用户可能对应用场景感兴趣,比如智能助手、自动化流程、数据增强等。需要举几个例子说明其用途。还要确保引用相关资源,如官方文档和GitHub仓库,并在回答末尾添加引用标识。 最后,生成相关问题时要考虑用户可能的后续疑问,比如与LangChain的区别、使用场景、核心功能、支持的模型,以及如何开始使用。确保问题相关且有帮助,引导用户进一步探索。 在回答过程中,需要遵循用户提供的格式要求,使用正确的LaTeX语法,虽然当前内容可能不需要数学公式,但需保持警惕。同时,用中文回答,结构清晰,分点说明,保持自然流畅。检查是否有任何错误或过时信息,比如框架的最新版本或新增功能,确保回答的准确性和可靠性。</think>### Semantic Kernel 简介 Semantic Kernel(SK)是微软推出的开源框架,旨在帮助开发者将大型语言模型(LLMs)等AI能力集成到应用程序中。它提供了一套工具和接口,支持灵活的任务规划、上下文管理以及与外部服务的交互。 ### GitHub 与开源信息 - **GitHub仓库**:官方仓库为 [microsoft/semantic-kernel](https://github.com/microsoft/semantic-kernel),包含代码、文档和示例[^1]。 - **框架特点**: 1. **插件架构**:支持扩展功能模块(如API、数据库),并通过自然语言调用。 2. **规划能力**:将复杂任务分解为可执行的子任务,例如自动生成代码或数据分析步骤。 3. **多模型支持**:兼容OpenAI、Azure OpenAI、Hugging Face等模型。 4. **多语言支持**:支持C#、Python、Java(实验阶段)等语言。 ### 应用场景 - **智能助手**:集成LLMs实现对话式交互(如客服机器人)。 - **自动化流程**:自动生成代码、文档或执行数据清洗。 - **知识增强**:结合外部数据源(如企业数据库)提升模型输出的准确性[^2]。 ### 示例代码(Python) ```python import semantic_kernel as sk from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion kernel = sk.Kernel() kernel.add_chat_service("chat", OpenAIChatCompletion("gpt-3.5-turbo", "API_KEY")) skill = kernel.import_semantic_skill_from_directory("skills", "SummarizeSkill") summary = kernel.run(skill["Summarize"], input_text="长文本内容...") print(summary) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值