首先,先求最大公约数,利用的方法是辗转相除法
辗转相除法的基本原理
如果用C语言来实现,实现代码如下:
循环语句实现
long long int maxDivisor(long long int a,long long int b) //求最大公约数
{
long long int i,c;
if(a<b) //保证最大的数是a,因为是大数除小数
{
c = a;
a = b;
b = c;
}
while(a%b != 0)
{
c = a%b;
a = b;
b = c;
}
return b;
}
递归实现
int gcd(int a, int b)
{
if(b==0)
return a;
return gcd(b, a%b);
}
然后来求两个数的最小公倍数
方法1:(优点:速度快,首选这个)
利用先求出最大公约数,两个数的a和b,即
a*b/最大公约数 = 最小公倍数
b*d/maxDivisor(b,d);
方法2:
利用最小公倍数,肯定比最大的数大,比a*b小,那就用循环,从大数到a*b,判断是否可以被a,b整除,如果整除,说明就是最小公倍数
但是缺点就是,万一a和b这两个数太大,循环就很多次,这样子就容易超出时间
代码实现:
long long int minMultiple(long long int a,long long int b) //求最小公倍数
{
long long int i,c;
if(a<b) //确保a最大
{
c = a;
a = b;
b = c;
}
for(i = a;i <= a*b;i++)
{
if(i%a==0 && i%b==0)
break;
}
return i;
}