JPEG编码流程图:
详细可以参考:www.eecg.toronto.edu/~moshovos/CUDA08/arx/JPEG_report.pdf
代码参考nvidia提供的例子,不过那个例子是先读取一张jpg图片,然后缩放(处理的是YV12格式的数据),最后编码。很多东西都混在一起,不便宜使用。现在就提取其中有用的,去掉缩放的功能。
jpeg数据结构定义:
//量化表数据
struct QuantizationTable
{
unsigned char nPrecisionAndIdentifier;
unsigned char aTable[64];
};
//图片信息
struct FrameHeader
{
unsigned char nSamplePrecision;
unsigned short nHeight;
unsigned short nWidth;
unsigned char nComponents;
unsigned char aComponentIdentifier[3];
unsigned char aSamplingFactors[3];
unsigned char aQuantizationTableSelector[3];
};
//扫描头
struct ScanHeader
{
unsigned char nComponents;
unsigned char aComponentSelector[3];
unsigned char aHuffmanTablesSelector[3];
unsigned char nSs;
unsigned char nSe;
unsigned char nA;
};
//霍夫曼编码表数据,一般是固定的
struct HuffmanTable
{
unsigned char nClassAndIdentifier;
unsigned char aCodes[16];
unsigned char aTable[256];
};
类封装,这里也只是处理yuv数据
class CudaJpegEncode
{
public:
CudaJpegEncode();
~CudaJpegEncode();
public:
void Init();
void Uninit();
public:
void EncodeJpeg(const char* output_file);
void SetData(uint8_t* yuv_data, uint32_t data_size, int yuv_fmt, int w, int h);
public:
NppiDCTState* pDCTState;
FrameHeader oFrameHeader;
QuantizationTable aQuantizationTables[4];
Npp8u* pdQuantizationTables;
HuffmanTable aHuffmanTables[4];
HuffmanTable* pHuffmanDCTables = aHuffmanTables;
HuffmanTable* pHuffmanACTables = &aHuffmanTables[2];
ScanHeader oScanHeader;
NppiSize aSrcSize[3];
Npp16s *apdDCT[3];
Npp32s aDCTStep[3];
Npp8u *apSrcImage[3];
Npp32s aSrcImageStep[3];
size_t aSrcPitch[3];
NppiEncodeHuffmanSpec *apHuffmanDCTable[3];
NppiEncodeHuffmanSpec *apHuffmanACTable[3];
int nMCUBlocksH = 0;
int nMCUBlocksV = 0;
Npp8u *pdScan;
Npp32s nScanSize;
Npp8u *pJpegEncoderTemp;
size_t nTempSize;
unsigned char *pDstJpeg;
public:
uint8_t* mY;
uint8_t* mU;
uint8_t* mV;
int mWidth;
int mHeight;
};
类实现:
支持的最大图片尺寸
#define IMG_WIDTH_MAX 1920
#define IMG_HEIGHT_MAX 1080
#define IMG_WIDTH_MAX_HALF 960
#define IMG_HEIGHT_MAX_HALF 540
#define MEMORY_ALGN_DEVICE 511
#define YUV_FMT_NV12 1
#define YUV_FMT_NV21 2
#define YUV_FMT_YUV420 3
#ifndef max
#define max(X, Y) ((X) > (Y) ?(X):(Y))
#endif
//霍夫曼编码表
unsigned char STD_DC_Y_NRCODES[16] = { 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
unsigned char STD_DC_Y_VALUES[12] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
unsigned char STD_DC_UV_NRCODES[16] = { 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
unsigned char STD_DC_UV_VALUES[12] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
unsigned char STD_AC_Y_NRCODES[16] = { 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0X7D };
unsigned char STD_AC_Y_VALUES[162] =
{
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
unsigned char STD_AC_UV_NRCODES[16] = { 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0X77 };
unsigned char STD_AC_UV_VALUES[162] =
{
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
//量化表,可以根据图像质量要求更改,这里图像是90%
unsigned char std_Y_QT[64] =
{
3, 2, 2, 3, 2, 2, 3, 3,
3, 3, 4, 3, 3, 4, 5, 8,
5, 5, 4, 4, 5, 10, 7, 7,
6, 8, 12, 10, 12, 12, 11, 10,
11, 11, 13, 14, 18, 16, 13, 14,
17, 14, 11, 11, 16, 22, 16, 17,
19, 20, 21, 21, 21, 12, 15, 23,
24, 22, 20, 24, 18, 20, 21, 20
};
unsigned char std_UV_QT[64] =
{
3, 4, 4, 5, 4, 5, 9, 5,
5, 9, 20, 13, 11, 13, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20
};
int DivUp(int x, int d)
{
return (x + d - 1) / d;
}
void writeMarker(unsigned char nMarker, unsigned char *&pData)
{
*pData++ = 0x0ff;
*pData++ = nMarker;
}
template<class T>
void writeBigEndian(unsigned char *pData, T value)
{
unsigned char *pValue = reinterpret_cast<unsigned char *>(&value);
reverse_copy(pValue, pValue + sizeof(T), pData);
}
template<typename T>
void writeAndAdvance(unsigned char *&pData, T nElement)
{
writeBigEndian<T>(pData, nElement);
pData += sizeof(T);
}
void writeJFIFTag(unsigned char *&pData)
{
const char JFIF_TAG[] =
{
0x4a, 0x46, 0x49, 0x46, 0x00,
0x01, 0x02,
0x00,
0x00, 0x01, 0x00, 0x01,
0x00, 0x00
};
writeMarker(0x0e0, pData);
writeAndAdvance<unsigned short>(pData, sizeof(JFIF_TAG) + sizeof(unsigned short));
memcpy(pData, JFIF_TAG, sizeof(JFIF_TAG));
pData += sizeof(JFIF_TAG);
}
void writeQuantizationTable(const QuantizationTable &table, unsigned char *&pData)
{
writeMarker(0x0DB, pData);
writeAndAdvance<unsigned short>(pData, sizeof(QuantizationTable) + 2);
memcpy(pData, &table, sizeof(QuantizationTable));
pData += sizeof(QuantizationTable);
}
void writeHuffmanTable(const HuffmanTable &table, unsigned char *&pData)
{
writeMarker(0x0C4, pData);
// Number of Codes for Bit Lengths [1..16]
int nCodeCount = 0;
for (int i = 0; i < 16; ++i)
{
nCodeCount += table.aCodes[i];
}
writeAndAdvance<unsigned short>(pData, 17 + nCodeCount + 2);
memcpy(pData, &table, 17 + nCodeCount);
pData += 17 + nCodeCount;
}
void writeFrameHeader(const FrameHeader &header, unsigned char *&pData)
{
unsigned char aTemp[128];
unsigned char *pTemp = aTemp;
writeAndAdvance<unsigned char>(pTemp, header.nSamplePrecision);
writeAndAdvance<unsigned short>(pTemp, header.nHeight);
writeAndAdvance<unsigned short>(pTemp, header.nWidth);
writeAndAdvance<unsigned char>(pTemp, header.nComponents);
for (int c = 0; c < header.nComponents; ++c)
{
writeAndAdvance<unsigned char>(pTemp, header.aComponentIdentifier[c]);
writeAndAdvance<unsigned char>(pTemp, header.aSamplingFactors[c]);
writeAndAdvance<unsigned char>(pTemp, header.aQuantizationTableSelector[c]);
}
unsigned short nLength = (unsigned short)(pTemp - aTemp);
writeMarker(0x0C0, pData);
writeAndAdvance<unsigned short>(pData, nLength + 2);
memcpy(pData, aTemp, nLength);
pData += nLength;
}
void writeScanHeader(const ScanHeader &header, unsigned char *&pData)
{
unsigned char aTemp[128];
unsigned char *pTemp = aTemp;
writeAndAdvance<unsigned char>(pTemp, header.nComponents);
for (int c = 0; c < header.nComponents; ++c)
{
writeAndAdvance<unsigned char>(pTemp, header.aComponentSelector[c]);
writeAndAdvance<unsigned char>(pTemp, header.aHuffmanTablesSelector[c]);
}
writeAndAdvance<unsigned char>(pTemp, header.nSs);
writeAndAdvance<unsigned char>(pTemp, header.nSe);
writeAndAdvance<unsigned char>(pTemp, header.nA);
unsigned short nLength = (unsigned short)(pTemp - aTemp);
writeMarker(0x0DA, pData);
writeAndAdvance<unsigned short>(pData, nLength + 2);
memcpy(pData, aTemp, nLength);
pData += nLength;
}
CudaJpegEncode::CudaJpegEncode()
{
pDCTState = NULL;
nMCUBlocksH = 0;
nMCUBlocksV = 0;
pdScan = NULL;
nScanSize = 0;
pdQuantizationTables = NULL;
pJpegEncoderTemp = NULL;
nTempSize = 0;
pDstJpeg = NULL;
mY = NULL;
mU = NULL;
mV = NULL;
}
CudaJpegEncode::~CudaJpegEncode()
{
Uninit();
}
/*
brief: init the jpeg encoder
*/
void CudaJpegEncode::Init()
{
NPP_CHECK_NPP(nppiDCTInitAlloc(&pDCTState));
cudaMalloc(&pdQuantizationTables, 64 * 4);
memset(&oFrameHeader, 0, sizeof(FrameHeader));
memset(aQuantizationTables, 0, 4 * sizeof(QuantizationTable));
memset(aHuffmanTables, 0, 4 * sizeof(HuffmanTable));
//填充Huffman表
aHuffmanTables[0].nClassAndIdentifier = 0;
memcpy(aHuffmanTables[0].aCodes, STD_DC_Y_NRCODES, 16);
memcpy(aHuffmanTables[0].aTable, STD_DC_Y_VALUES, 12);
aHuffmanTables[1].nClassAndIdentifier = 1;
memcpy(aHuffmanTables[1].aCodes, STD_DC_UV_NRCODES, 16);
memcpy(aHuffmanTables[1].aTable, STD_DC_UV_VALUES, 12);
aHuffmanTables[2].nClassAndIdentifier = 16;
memcpy(aHuffmanTables[2].aCodes, STD_AC_Y_NRCODES, 16);
memcpy(aHuffmanTables[2].aTable, STD_AC_Y_VALUES, 162);
aHuffmanTables[3].nClassAndIdentifier = 17;
memcpy(aHuffmanTables[3].aCodes, STD_AC_UV_NRCODES, 16);
memcpy(aHuffmanTables[3].aTable, STD_AC_UV_VALUES, 162);
aQuantizationTables[0].nPrecisionAndIdentifier = 0;
memcpy(aQuantizationTables[0].aTable, std_Y_QT, 64);
aQuantizationTables[1].nPrecisionAndIdentifier = 1;
memcpy(aQuantizationTables[1].aTable, std_UV_QT, 64);
// Copy DCT coefficients and Quantization Tables from host to device
//拷贝时之字型扫描不可少,否则会出现一下人为畸变
Npp8u aZigzag[] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
for (int i = 0; i < 4; ++i)
{
Npp8u temp[64];
for (int k = 0; k < 32; ++k)
{
temp[2 * k + 0] = aQuantizationTables[i].aTable[aZigzag[k + 0]];
temp[2 * k + 1] = aQuantizationTables[i].aTable[aZigzag[k + 32]];
}
NPP_CHECK_CUDA(cudaMemcpyAsync((unsigned char *)pdQuantizationTables + i * 64, temp, 64, cudaMemcpyHostToDevice));
}
//NPP_CHECK_CUDA(cudaMemcpyAsync(pdQuantizationTables, aQuantizationTables[0].aTable, 64, cudaMemcpyHostToDevice));
//NPP_CHECK_CUDA(cudaMemcpyAsync(pdQuantizationTables + 64, aQuantizationTables[1].aTable, 64, cudaMemcpyHostToDevice));
oFrameHeader.nSamplePrecision = 8;
oFrameHeader.nComponents = 3;
oFrameHeader.aComponentIdentifier[0] = 1;
oFrameHeader.aComponentIdentifier[1] = 2;
oFrameHeader.aComponentIdentifier[2] = 3;
oFrameHeader.aSamplingFactors[0] = 34;
oFrameHeader.aSamplingFactors[1] = 17;
oFrameHeader.aSamplingFactors[2] = 17;
oFrameHeader.aQuantizationTableSelector[0] = 0;
oFrameHeader.aQuantizationTableSelector[1] = 1;
oFrameHeader.aQuantizationTableSelector[2] = 1;
for (int i = 0; i < oFrameHeader.nComponents; ++i)
{
nMCUBlocksV = max(nMCUBlocksV, oFrameHeader.aSamplingFactors[i] & 0x0f);
nMCUBlocksH = max(nMCUBlocksH, oFrameHeader.aSamplingFactors[i] >> 4);
}
oFrameHeader.nWidth = HD_IMG_WIDTH_MAX;
oFrameHeader.nHeight = HD_IMG_HEIGHT_MAX;
for (int i = 0; i < oFrameHeader.nComponents; ++i)
{
NppiSize oBlocks;
NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] >> 4, oFrameHeader.aSamplingFactors[i] & 0x0f };
oBlocks.width = (int)ceil((oFrameHeader.nWidth + 7) / 8 *
static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;
oBlocks.height = (int)ceil((oFrameHeader.nHeight + 7) / 8 *
static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;
aSrcSize[i].width = oBlocks.width * 8;
aSrcSize[i].height = oBlocks.height * 8;
// Allocate Memory
size_t nPitch;
NPP_CHECK_CUDA(cudaMallocPitch(&apdDCT[i], &nPitch, oBlocks.width * 64 * sizeof(Npp16s), oBlocks.height));
aDCTStep[i] = static_cast<Npp32s>(nPitch);
NPP_CHECK_CUDA(cudaMallocPitch(&apSrcImage[i], &nPitch, aSrcSize[i].width, aSrcSize[i].height));
aSrcPitch[i] = nPitch;
aSrcImageStep[i] = static_cast<Npp32s>(nPitch);
}
/**
* Allocates memory and creates a Huffman table in a format that is suitable for the encoder.
*/
NppStatus t_status;
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[0].aCodes, nppiDCTable, &apHuffmanDCTable[0]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[0].aCodes, nppiACTable, &apHuffmanACTable[0]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[1].aCodes, nppiDCTable, &apHuffmanDCTable[1]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[1].aCodes, nppiACTable, &apHuffmanACTable[1]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[1].aCodes, nppiDCTable, &apHuffmanDCTable[2]);
t_status = nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[1].aCodes, nppiACTable, &apHuffmanACTable[2]);
nScanSize = HD_IMG_WIDTH_MAX * HD_IMG_HEIGHT_MAX * 2;
nScanSize = nScanSize > (4 << 20) ? nScanSize : (4 << 20);
NPP_CHECK_CUDA(cudaMalloc(&pdScan, nScanSize));
NPP_CHECK_NPP(nppiEncodeHuffmanGetSize(aSrcSize[0], 3, &nTempSize));
NPP_CHECK_CUDA(cudaMalloc(&pJpegEncoderTemp, nTempSize));
pDstJpeg = new unsigned char[nScanSize];
uint32_t nPitch = (IMG_WIDTH_MAX + MEMORY_ALGN_DEVICE) & ~MEMORY_ALGN_DEVICE;
mY = (uint8_t*)malloc(nPitch * IMG_HEIGHT_MAX);
nPitch = (IMG_WIDTH_MAX_HALF + MEMORY_ALGN_DEVICE) & ~MEMORY_ALGN_DEVICE;
mU = (uint8_t*)malloc(nPitch * IMG_HEIGHT_MAX_HALF);
mV = (uint8_t*)malloc(nPitch * IMG_HEIGHT_MAX_HALF);
uint32_t row_bytes = (IMG_WIDTH_MAX * 3 + 3) & ~3;
NPP_CHECK_CUDA(cudaMalloc(&mRGBData, row_bytes * HD_IMG_HEIGHT_MAX));
}
/*
brief:release host memory and device memory, no need always create the obj and release to induce the encoding performance
*/
void CudaJpegEncode::Uninit()
{
cudaFree(pJpegEncoderTemp);
cudaFree(pdQuantizationTables);
cudaFree(pdScan);
nppiDCTFree(pDCTState);
if (pDstJpeg)
{
delete[] pDstJpeg;
pDstJpeg = NULL;
}
if (mY)
{
free(mY);
mY = NULL;
}
if (mU)
{
free(mU);
mU = NULL;
}
if (mV)
{
free(mV);
mV = NULL;
}
for (int i = 0; i < 3; ++i)
{
cudaFree(apdDCT[i]);
cudaFree(apSrcImage[i]);
nppiEncodeHuffmanSpecFree_JPEG(apHuffmanDCTable[i]);
nppiEncodeHuffmanSpecFree_JPEG(apHuffmanACTable[i]);
}
}
/*
brief: encode yuv data to jpeg format data, and write to file
*/
void CudaJpegEncode::EncodeJpeg(const char* output_file)
{
oFrameHeader.nWidth = mWidth;
oFrameHeader.nHeight = mHeight;
for (int i = 0; i < oFrameHeader.nComponents; ++i)
{
NppiSize oBlocks;
NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] >> 4, oFrameHeader.aSamplingFactors[i] & 0x0f };
oBlocks.width = (int)ceil((oFrameHeader.nWidth + 7) / 8 *
static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;
oBlocks.height = (int)ceil((oFrameHeader.nHeight + 7) / 8 *
static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;
aSrcSize[i].width = oBlocks.width * 8;
aSrcSize[i].height = oBlocks.height * 8;
// Allocate Memory
size_t nPitch;
nPitch = (oBlocks.width * 64 * sizeof(Npp16s) + HD_MEMORY_ALGN_DEVICE) & ~HD_MEMORY_ALGN_DEVICE;
aDCTStep[i] = static_cast<Npp32s>(nPitch);
nPitch = (aSrcSize[i].width + HD_MEMORY_ALGN_DEVICE) & ~HD_MEMORY_ALGN_DEVICE;
aSrcPitch[i] = nPitch;
aSrcImageStep[i] = static_cast<Npp32s>(nPitch);
}
NPP_CHECK_CUDA(cudaMemcpy(apSrcImage[0], mY, aSrcPitch[0] * mHeight, cudaMemcpyHostToDevice));
NPP_CHECK_CUDA(cudaMemcpy(apSrcImage[1], mU, aSrcPitch[1] * mHeight / 2, cudaMemcpyHostToDevice));
NPP_CHECK_CUDA(cudaMemcpy(apSrcImage[2], mV, aSrcPitch[2] * mHeight / 2, cudaMemcpyHostToDevice));
/**
* Forward DCT, quantization and level shift part of the JPEG encoding.
* Input is expected in 8x8 macro blocks and output is expected to be in 64x1
* macro blocks. The new version of the primitive takes the ROI in image pixel size and
* works with DCT coefficients that are in zig-zag order.
*/
int k = 0;
NPP_CHECK_NPP(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[0], aSrcImageStep[0],
apdDCT[0], aDCTStep[0],
pdQuantizationTables + k * 64,
aSrcSize[0],
pDCTState));
k = 1;
NPP_CHECK_NPP(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[1], aSrcImageStep[1],
apdDCT[1], aDCTStep[1],
pdQuantizationTables + k * 64,
aSrcSize[1],
pDCTState));
NPP_CHECK_NPP(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[2], aSrcImageStep[2],
apdDCT[2], aDCTStep[2],
pdQuantizationTables + k * 64,
aSrcSize[2],
pDCTState));
/**
* Huffman Encoding of the JPEG Encoding.
* Input is expected to be 64x1 macro blocks and output is expected as byte stuffed huffman encoded JPEG scan.
*/
Npp32s nSs = 0;
Npp32s nSe = 63;
Npp32s nH = 0;
Npp32s nL = 0;
Npp32s nScanLength;
NPP_CHECK_NPP(nppiEncodeHuffmanScan_JPEG_8u16s_P3R(apdDCT, aDCTStep,
0, nSs, nSe, nH, nL,
pdScan, &nScanLength,
apHuffmanDCTable,
apHuffmanACTable,
aSrcSize,
pJpegEncoderTemp));
unsigned char *pDstOutput = pDstJpeg;
writeMarker(0x0D8, pDstOutput);
writeJFIFTag(pDstOutput);
writeQuantizationTable(aQuantizationTables[0], pDstOutput);
writeQuantizationTable(aQuantizationTables[1], pDstOutput);
writeFrameHeader(oFrameHeader, pDstOutput);
writeHuffmanTable(pHuffmanDCTables[0], pDstOutput);
writeHuffmanTable(pHuffmanACTables[0], pDstOutput);
writeHuffmanTable(pHuffmanDCTables[1], pDstOutput);
writeHuffmanTable(pHuffmanACTables[1], pDstOutput);
oScanHeader.nComponents = 3;
oScanHeader.aComponentSelector[0] = 1;
oScanHeader.aComponentSelector[1] = 2;
oScanHeader.aComponentSelector[2] = 3;
oScanHeader.aHuffmanTablesSelector[0] = 0;
oScanHeader.aHuffmanTablesSelector[1] = 17;
oScanHeader.aHuffmanTablesSelector[2] = 17;
oScanHeader.nSs = 0;
oScanHeader.nSe = 63;
oScanHeader.nA = 0;
writeScanHeader(oScanHeader, pDstOutput);
NPP_CHECK_CUDA(cudaMemcpy(pDstOutput, pdScan, nScanLength, cudaMemcpyDeviceToHost));
pDstOutput += nScanLength;
writeMarker(0x0D9, pDstOutput);
{
// Write result to file.
std::ofstream outputFile(output_file, ios::out | ios::binary);
outputFile.write(reinterpret_cast<const char *>(pDstJpeg), static_cast<int>(pDstOutput - pDstJpeg));
}
}
/*
brief: setting yuv image data, convert to yuv420
yuv_data:yuv data
yuv_fmt: yuv format, nv12 or nv21
w: image width
h: image height
size: data size
*/
void CudaJpegEncode::SetData(uint8_t* yuv_data, uint32_t data_size, int yuv_fmt, int w, int h)
{
if (!yuv_data)
{
return;
}
mWidth = w;
mHeight = h;
int i, j;
uint32_t nPitch;
uint32_t off;
uint32_t off_yuv;
uint32_t half_h;
uint32_t half_w;
uint32_t u_size;
uint8_t* yuv_ptr;
uint8_t* u_ptr;
uint8_t* v_ptr;
nPitch = (w + HD_MEMORY_ALGN_DEVICE) & ~HD_MEMORY_ALGN_DEVICE;
off = 0;
off_yuv = 0;
for (i = 0; i < h; i++)
{
memcpy(mY + off, yuv_data + off_yuv, w);
off += nPitch;
off_yuv += w;
}
half_w = w >> 1;
half_h = h >> 1;
u_size = half_w * half_h;
nPitch = (half_w + HD_MEMORY_ALGN_DEVICE) & ~HD_MEMORY_ALGN_DEVICE;
switch (yuv_fmt)
{
case YUV_FMT_NV12:
{
off_yuv = w * h;
off = 0;
for (i = 0; i < half_h; i++)
{
yuv_ptr = yuv_data + off_yuv;
u_ptr = mU + off;
v_ptr = mV + off;
for (j = 0; j < w; j += 2)
{
*u_ptr++ = *yuv_ptr++;
*v_ptr++ = *yuv_ptr++;
}
off_yuv += w;
off += nPitch;
}
}
break;
case YUV_FMT_NV21:
{
off_yuv = w * h;
off = 0;
for (i = 0; i < half_h; i++)
{
yuv_ptr = yuv_data + off_yuv;
u_ptr = mU + off;
v_ptr = mV + off;
for (j = 0; j < w; j += 2)
{
*v_ptr++ = *yuv_ptr++;
*u_ptr++ = *yuv_ptr++;
}
off_yuv += w;
off += nPitch;
}
}
break;
case YUV_FMT_YUV420:
{
off_yuv = w * h;
off = 0;
for (i = 0; i < half_h; i++)
{
memcpy(mU + off, yuv_data + off_yuv, half_w);
memcpy(mV + off, yuv_data + off_yuv + u_size, half_w);
off_yuv += half_w;
off += nPitch;
}
}
break;
default:
break;
}
}
使用时先Init,然后再setdata,最后encode。
CUDA中不停的申请和拷贝数据会占用更多的时间,所以,需要的空间先分配,编码时直接使用,这样会提升很大效率。
测试结果:采用cpu编码1920x1080的图片需要时间17ms,而采用上述代码,9ms,提升一倍以上。
以上部分代码参考:https://www.cnblogs.com/betterwgo/p/7300920.html,感谢作者的贡献。