Java排序算法(九):归并排序
tip
这里文字部分主要为转载,思路呢无非是分治思路
//思路:分治法的思路,将数组分开,分为两个数组(两个数组各自细分,就是递归的思路)
//两个数组各自排序好之后,再合并,合并的过程就需要准备开辟新的数组空间来存放合并的数组
//数组操作嘛,无非是指针或者是数组分割,思路都是一样的,只不过代码呈现的形式不同而已。
指针[转载部分]
归并排序(Merge) 是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
归并排序算法稳定,数组需要O(n)的额外空间,链表需要O(log(n))的额外空间,时间复杂度为O(nlog(n)),算法不是自适应的,不需要对数据的随机读取。
工作原理:
1、申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2、设定两个指针,最初位置分别为两个已经排序序列的起始位置
3、比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4、重复步骤3直到某一指针达到序列尾
5、将另一序列剩下的所有元素直接复制到合并序列尾
代码实现:
public class MergeSortTest {
public static void main(String[] args) {
int[] data = new int[] { 5, 3, 6, 2, 1, 9, 4, 8, 7 };
print(data);
mergeSort(data);
System.out.println("排序后的数组:");
print(data);
}
public static void mergeSort(int[] data) {
sort(data, 0, data.length - 1);
}
public static void sort(int[] data, int left, int right) {
if (left >= right)
return;
// 找出中间索引
int center = (left + right) / 2;
// 对左边数组进行递归
sort(data, left, center);
// 对右边数组进行递归
sort(data, center + 1, right);
// 合并
merge(data, left, center, right);
print(data);
}
/**
* 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
*
* @param data
* 数组对象
* @param left
* 左数组的第一个元素的索引
* @param center
* 左数组的最后一个元素的索引,center+1是右数组第一个元素的索引
* @param right
* 右数组最后一个元素的索引
*/
public static void merge(int[] data, int left, int center, int right) {
// 临时数组
int[] tmpArr = new int[data.length];
// 右数组第一个元素索引
int mid = center + 1;
// third 记录临时数组的索引
int third = left;
// 缓存左数组第一个元素的索引
int tmp = left;
while (left <= center && mid <= right) {
// 从两个数组中取出最小的放入临时数组
if (data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
} else {
tmpArr[third++] = data[mid++];
}
}
// 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
while (mid <= right) {
tmpArr[third++] = data[mid++];
}
while (left <= center) {
tmpArr[third++] = data[left++];
}
// 将临时数组中的内容拷贝回原数组中
// (原left-right范围的内容被复制回原数组)
while (tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
}
public static void print(int[] data) {
for (int i = 0; i < data.length; i++) {
System.out.print(data[i] + "\t");
}
System.out.println();
}
}
数组风格的方式
private static int[] mergeSort(int[] nums) {
if (nums.length < 2) {
return nums;
}
int mid = nums.length / 2;
int[] left = Arrays.copyOfRange(nums, 0, mid);
int[] right = Arrays.copyOfRange(nums, mid, nums.length);
return merge(mergeSort(left), mergeSort(right));
}
private static int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
for (int index = 0, i = 0, j = 0; index < result.length; index++) {
if (i >= left.length)
result[index] = right[j++];
else if (j >= right.length)
result[index] = left[i++];
else if (left[i] <= right[j])
result[index] = left[i++];
else
result[index] = right[j++];
}
return result;
}
添加链表内容
public ListNode mergeKLists(ListNode[] lists)
{
if (lists == null || lists.length == 0)
return null;
return merge_sort(lists, 0, lists.length-1);
}
public ListNode merge_sort(ListNode [] lists, int l, int r)
{
if (l == r)
return lists[l];
int mid = (l + r) / 2;
ListNode L = merge_sort(lists, l, mid);
ListNode R = merge_sort(lists, mid + 1, r);
return merge(L, R);
}
public ListNode merge(ListNode a, ListNode b)
{
ListNode dummy = new ListNode(-1);
ListNode x = dummy;
while (a != null && b != null)
{
if (a.val < b.val)
{
x.next = a;
a = a.next;
}
else
{
x.next = b;
b = b.next;
}
x = x.next;
}
if (a != null)
x.next = a;
if (b != null)
x.next = b;
return dummy.next;
}