信息论随笔(三)交互信息量

之前讨论了一个事件的自信息量,但是实际情况下往往有多个事件发生,而且这些事件之间相互是有联系的。比如知道一个人踢足球,那么这个人很有可能会看世界杯。也就是说,我们可以通过一个事件获得另外一个事件的信息,或者说,消除另外一个事件的不确定性。(信息量是用来衡量不确定性的。)那么,如何在数学上表示这种情况呢?

考虑事件A和事件B,它们发生的概率分别是P(a)和P(b)。如何计算事件A可以从事件B中获得多少信息量?

事件B发生前,事件A的信息量(不确定性)I_1log(\frac 1 {P(a)})

事件B发生后,事件A的概率是在事件B发生条件下的概率:P(a|b),事件A的信息量(不确定性)I_2log(\frac 1 {P(a|b)})

那么事件A从事件B中获得的信息量即I_1-I_2。事件A的不确定性被事件B消除了一部分,所以信息量减少了。

I(A;B)=log(\frac 1 {P(a)}) - log(\frac 1 {P(a|b)})=log(\frac {P(a|b)} {P(a)})

由于P(a|b) = \frac {P(ab)}{P(b)},代入上式可得I(A;B)=log(\frac {P(ab)} {P(a)P(b)})=log(\frac {P(b|a)}{P(b)}),该式子等于事件B从事件A中获得的信息量。

上式表明了事件A从事件B中获得的信息量与事件B从事件A中获得的信息量是相同的,交互信息量是对称的。

对上个式子进行变形,还可以得到I(A;B)=log(\frac {P(ab)} {P(a)P(b)})=log(\frac {1}{P(a)})+log(\frac {1}{P(b)})-log(\frac {1}{P(ab)})

这个式子可以从系统的整体来看,系统的信息量的变化等于事件A的自信息量加上事件B的自信息量减去事件A和事件B同时发生的信息量。

所以交互信息量有3种算法:I(A;B) = H(A)-H(A|B)=H(B)-H(B|A)=H(A)+H(B)-H(AB)

其中H代表信息熵。(单个事件发生时信息熵就是这个事件的自信息量)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值