之前讨论了一个事件的自信息量,但是实际情况下往往有多个事件发生,而且这些事件之间相互是有联系的。比如知道一个人踢足球,那么这个人很有可能会看世界杯。也就是说,我们可以通过一个事件获得另外一个事件的信息,或者说,消除另外一个事件的不确定性。(信息量是用来衡量不确定性的。)那么,如何在数学上表示这种情况呢?
考虑事件A和事件B,它们发生的概率分别是P(a)和P(b)。如何计算事件A可以从事件B中获得多少信息量?
事件B发生前,事件A的信息量(不确定性):
事件B发生后,事件A的概率是在事件B发生条件下的概率:,事件A的信息量(不确定性)为
那么事件A从事件B中获得的信息量即。事件A的不确定性被事件B消除了一部分,所以信息量减少了。
由于,代入上式可得,该式子等于事件B从事件A中获得的信息量。
上式表明了事件A从事件B中获得的信息量与事件B从事件A中获得的信息量是相同的,交互信息量是对称的。
对上个式子进行变形,还可以得到
这个式子可以从系统的整体来看,系统的信息量的变化等于事件A的自信息量加上事件B的自信息量减去事件A和事件B同时发生的信息量。
所以交互信息量有3种算法:
其中H代表信息熵。(单个事件发生时信息熵就是这个事件的自信息量)