poj3693--出现次数最多的连续重复子串(后缀数组)

先穷举长度L,然后求长度为L的子串最多能连续出现几次。首先连续出现1次是肯定可以的,所以这里只考虑至少2次的情况。假设在原字符串中连续出现2次,记这个子字符串为S,那么S肯定包括了字符r[0], r[L], r[L2],r[L3], ……中的某相邻的两个。所以只须看字符r[Li]和r[L(i+1)]往前和
往后各能匹配到多远,记这个总长度为K,那么这里连续出现了K/L+1次。最后看最大值是多少。如图所示。

在这里插入图片描述

#include "iostream"
#include "cstdio"
#include "cstring"
#define maxn 100005
using namespace std;
char s[maxn];
int sa[maxn],se[maxn],rk[maxn],x[maxn],height[maxn],tank[maxn],dp[maxn][25],n,m,t;
void build(){
    m=127;
    for(int i=0;i<=m;i++) tank[i]=0;
    for(int i=1;i<=n;i++) tank[x[i]=s[i]]++;
    for(int i=1;i<=m;i++) tank[i]+=tank[i-1];
    for(int i=n;i>=1;i--) sa[tank[x[i]]--]=i;
    for(int j=1;j<=n;j<<=1){
        int p=0;
        for(int i=n-j+1;i<=n;i++) se[++p]=i;
        for(int i=1;i<=n;i++) if(sa[i]>j) se[++p]=sa[i]-j;
        for(int i=0;i<=m;i++) tank[i]=0;
        for(int i=1;i<=n;i++) tank[x[se[i]]]++;
        for(int i=1;i<=m;i++) tank[i]+=tank[i-1];
        for(int i=n;i>=1;i--) sa[tank[x[se[i]]]--]=se[i];
        swap(x,se);
        p=1;x[sa[1]]=1;
        for(int i=2;i<=n;i++){
            x[sa[i]]=se[sa[i]]==se[sa[i-1]]&&se[sa[i]+j]==se[sa[i-1]+j]?p:++p;
        }
        if(p>=n) break;
        m=p;
    }
    for(int i=1;i<=n;i++) rk[sa[i]]=i;
    int k=0;
    for(int i=1;i<=n;i++){
        if(rk[i]==1) continue;
        if(k) --k;
        int j=sa[rk[i]-1];
        while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k]) ++k;
        height[rk[i]]=k;
    }
}
void ini(){
    for(int i=1;i<=n;i++) dp[i][0]=height[i];
    for(int j=1;j<=20;j++){
        for(int i=1;i+(1<<j)-1<=n;i++){
            dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
        }
    }
}
int rmq(int l,int r){
    int j=0,len=r-l+1;
    for(;(1<<j)<=len;j++);
    --j;
    return min(dp[l][j],dp[r-(1<<j)+1][j]);
}
int lcp(int l,int r){//任意两个下标的最长公共前缀;
    l=rk[l];r=rk[r];
    if(l>r) swap(l,r);
    return rmq(l+1,r);
}
int main(){
    int Case=0;
    while(scanf("%s",s+1)&&s[1]!='#'){
        ++Case;
        printf("Case %d: ",Case);
        n=strlen(s+1);
        build();
        ini();
        int ans=1,st=0,L=0;
        for(int len=1;len<=n;len++){//枚举重复子串长度
            for(int i=1;i+len<=n;i+=len){
                int pos=i;
                int k=lcp(i, i+len);
                int sum=k/len+1,res=len-k%len,cnt=0;
                for(int j=i-1;j>i-len&&j>=1&&s[j]==s[j+len];j--){
                    ++cnt;
                    if(cnt==res){
                        sum++;
                        pos=j;
                    }
                    else if(rk[j]<rk[pos]) pos=j;
                }
                if(sum>ans){
                    ans=sum;
                    st=pos;
                    L=len;
                }
                else if(sum==ans&&rk[st]>rk[pos]){
                    st=pos;
                    L=len;
                }
            }
            
        }
        if(ans==1){
            int mn=128;
            for(int i=1;i<=n;i++){
                if(s[i]<mn) mn=s[i];
            }
            printf("%c\n",(char)mn);
        }
        else{
            for(int i=st;i<=st+L*ans-1;i++) printf("%c",s[i]);
            putchar('\n');
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值