C++搜索二叉树的查找、插入、删除

二叉搜索树又叫二叉排序树、二叉查找树,便于排序和查找,其性质如下:
(1)非空左子树的所有键值小于其根结点的键值;
(2)非空右子树的所有键值大于其根结点的键值;
(3)左、右子树都是二叉搜索树。
关于二叉搜索树的主要操作有:

  • 动态查找:找元素X、最大元素、最小元素
  • 插入元素
  • 删除元素

一、动态查找

(一)查找元素X
若结点键值等于X,返回指向此结点的指针;
若结点键值小于X,在该结点左子树查找;
若结点键值大于X,在该节点右子树查找。
递归实现:

/*二叉搜索树查找的递归算法*/
BinTree *RecurFind(BinTree *BST,ElementType X)
{
    if(!BST)
        return NULL;
    if(X>BST->data)
        return(RecurFind(BST->Right,X));
    else if(X<BST->data)
        return(RecurFind(BST->Left,X));
    else
        return(BST);
}

非递归的迭代实现:

/*二叉搜索树查找的非递归算法*/
BinTree *NonRecurFind(BinTree *BST,ElementType X)
{
    if(!BST)
        return NULL;
    while(BST){
        if(X>BST->data)
            BST=BST->Right;
        else if(X<BST->data)
            BST=BST->Left;
        else
            break;
    }
    return(BST);
}

(二)查找最大元素
最大元素在二叉搜索树最右分支的端结点上,所以一直往右直到遇到空指针即可。
递归实现:

/*递归查找最大元素*/
BinTree *RecurFindMax(BinTree *BST)
{
    if(!BST)
        return NULL;
    else if(!BST->Right)
        return(BST);
    else
        return(RecurFindMax(BST->Right));
}

非递归的迭代实现:

/*迭代查找最大元素*/
BinTree *NonRecurFindMax(BinTree *BST)
{
    if(BST)
        while(BST->Right)
            BST=BST->Right;
    return(BST);
}

(三)查找最小元素
最小元素在二叉搜索树最左分支的端结点上,所以一直往左直到遇到空指针即可。
递归实现:

/*递归查找最小元素*/
BinTree *RecurFindMin(BinTree *BST)
{
    if(!BST)
        return NULL;
    else if(!BST->Left)
        return(BST);
    else
        return(RecurFindMin(BST->Left));
}

非递归的迭代实现:

/*迭代查找最小元素*/
BinTree *NonRecurFindMin(BinTree *BST)
{
    if(!BST)
        return NULL;
    while(BST->Left){
        BST=BST->Left;
    }
    return(BST);
}

二、插入

插入元素X的关键是找到X插入的位置。若在二叉搜索树中找到X,说明X已存在,可放弃插入操作;否则查找终止的位置就是X应插入的位置。

/*二叉搜索树的插入
若用此函数创建一棵搜索二叉树,在第一次调用前,需BST=NULL*/
BinTree *Insert(BinTree *BST,ElementType X)
{

    if(!BST){
        BST=new BinTree;
        BST->data=X;
        BST->Left=BST->Right=NULL;
    }
    else if(BST->data>X)
        BST->Left=Insert(BST->Left,X);
    else if(BST->data<X)
        BST->Right=Insert(BST->Right,X);
    else;
    return(BST);
}

三、删除

删除的结点为BST结点的子结点;
删除的结点为BST结点的子结点(BST结点有两个子结点;BST结点有一个子结点或没有子结点)。

/*二叉搜索树删除操作*/
BinTree *Delete(BinTree *BST,ElementType X)
{
    BinTree *Tmp;
    if(!BST){
        cout<<"未找到要删除的元素"<<endl;
        return(BST);
    }
    if(BST->data>X)
        Delete(BST->Left,X);
    else if(BST->data<X)
        Delete(BST->Right,X);
    else{
        if(BST->Left && BST->Right){
            Tmp=NonRecurFindMin(BST->Right);
            BST->data=Tmp->data;
            BST=Delete(BST->Right,BST->data);
        }
        else{
            Tmp=BST;
            if(!BST->Left)
                BST=BST->Right;
            else
                BST=BST->Left;
            delete(Tmp);
        }
    }
    return(BST);
}

以下是一个可直接运行的完整程序:
按从一至十二月的顺序输入一年十二个月的英文缩写,产生一棵搜索二叉树,查找其中的Feb值、最小键值和最大键值,删除并不存在的Leo值。

#include <iostream>
#define NoInfo "000"
using namespace std;
typedef string ElementType;
/*定义二叉树结点类型*/
typedef struct BinNode
{
    ElementType data;
    BinNode *Left;
    BinNode *Right;
}BinTree;

BinTree *RecurFind(BinTree *BST,ElementType X);
BinTree *NonRecurFind(BinTree *BST,ElementType X);
BinTree *RecurFindMin(BinTree *BST);
BinTree *NonRecurFindMin(BinTree *BST);
BinTree *RecurFindMax(BinTree *BST);
BinTree *NonRecurFindMax(BinTree *BST);
BinTree *Insert(BinTree *BST,ElementType X);
BinTree *Delete(BinTree *BST,ElementType X);

int main()
{
    BinTree *BST,*T;
    BST=NULL;
    ElementType x;
    cout<<"输入:"<<endl;
    cin>>x;
    while(x!=NoInfo){
        BST=Insert(BST,x);
        cin>>x;
    }
    cout<<"输出:"<<endl;
    T=RecurFind(BST,"Feb");
    cout<<"查找:"<<T->data<<endl;
    T=NonRecurFindMin(BST);
    cout<<"最小键值:"<<T->data<<endl;
    T=NonRecurFindMax(BST);
    cout<<"最大键值:"<<T->data<<endl;
    cout<<"查找Leo:";
    BST=Delete(BST,"Leo");

    return 0;
}

/*二叉搜索树查找的递归算法*/
BinTree *RecurFind(BinTree *BST,ElementType X)
{
    if(!BST)
        return NULL;
    if(X>BST->data)
        return(RecurFind(BST->Right,X));
    else if(X<BST->data)
        return(RecurFind(BST->Left,X));
    else
        return(BST);
}

/*二叉搜索树查找的非递归算法*/
BinTree *NonRecurFind(BinTree *BST,ElementType X)
{
    if(!BST)
        return NULL;
    while(BST){
        if(X>BST->data)
            BST=BST->Right;
        else if(X<BST->data)
            BST=BST->Left;
        else
            break;
    }
    return(BST);
}

/*递归查找最小元素*/
BinTree *RecurFindMin(BinTree *BST)
{
    if(!BST)
        return NULL;
    else if(!BST->Left)
        return(BST);
    else
        return(RecurFindMin(BST->Left));
}
/*迭代查找最小元素*/
BinTree *NonRecurFindMin(BinTree *BST)
{
    if(!BST)
        return NULL;
    while(BST->Left){
        BST=BST->Left;
    }
    return(BST);
}
/*递归查找最大元素*/
BinTree *RecurFindMax(BinTree *BST)
{
    if(!BST)
        return NULL;
    else if(!BST->Right)
        return(BST);
    else
        return(RecurFindMax(BST->Right));
}
/*迭代查找最大元素*/
BinTree *NonRecurFindMax(BinTree *BST)
{
    if(BST)
        while(BST->Right)
            BST=BST->Right;
    return(BST);
}

/*二叉搜索树的插入
若用此函数创建一棵搜索二叉树,在第一次调用前,需BST=NULL*/
BinTree *Insert(BinTree *BST,ElementType X)
{

    if(!BST){
        BST=new BinTree;
        BST->data=X;
        BST->Left=BST->Right=NULL;
    }
    else if(BST->data>X)
        BST->Left=Insert(BST->Left,X);
    else if(BST->data<X)
        BST->Right=Insert(BST->Right,X);
    else;
    return(BST);
}

/*二叉搜索树删除操作*/
BinTree *Delete(BinTree *BST,ElementType X)
{
    BinTree *Tmp;
    if(!BST){
        cout<<"未找到要删除的元素"<<endl;
        return(BST);
    }
    if(BST->data>X)
        Delete(BST->Left,X);
    else if(BST->data<X)
        Delete(BST->Right,X);
    else{
        if(BST->Left && BST->Right){
            Tmp=NonRecurFindMin(BST->Right);
            BST->data=Tmp->data;
            BST=Delete(BST->Right,BST->data);
        }
        else{
            Tmp=BST;
            if(!BST->Left)
                BST=BST->Right;
            else
                BST=BST->Left;
            delete(Tmp);
        }
    }
    return(BST);
}

运行结果:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值