最近需要调用Open AI的API,对openai.ChatCompletion.create()函数的输入流stream参数不太了解,网上查看了一些资料,记在这里。由于我购买的API支持的openai的版本较低,代码中涉及的函数可能只对低版本的openai第三方库有效。
文章 OpenAI API (五)Chat Completion中的stream处理 对stream流式的原理进行了较为详细的介绍。简言之,当设置stream = False 时响应是一个json格式的数据块,以message的形式整体输出;当stream = True 时则可以实现逐步读写,按需处理,无需提前加载全部数据。
文章 Python调用GPT3.5接口的最新方法实例详解 有stream = False 和stream = True 的详细代码示例。
这里只记我自己用到的。
import openai
openai.api_base = "url" # 换成代理url
openai.api_key = "sk-XXXXXXXX" # your api_key
- 当stream = False
response1 = openai.ChatCompletion.create(
model = 'gpt-3.5-turbo',
messages = [
{
"role": "user",
"content": system1 + question1,
}
],
# prompt = system1 + question1,
temperature = 0,
max_tokens = 100,
top_p = 1,
frequency_penalty = 0,
presence_penalty = 0,
stop = None
)
#answer1 = response1.choices[0].text.strip()
answer1 = response1.choices[0].message['content'].strip()
- 当stream = True
for resp in openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "证明费马大定理"}
],
# 流式输出
stream = True):
if 'content' in resp.choices[0].delta:
print(resp.choices[0].delta.content, end="", flush=True)