问题描述:
树可以用来表示物种之间的进化关系。一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异。现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树”。
令N={1..n},用一个N上的矩阵M来定义树T。其中,矩阵M满足:对于任意的i,j,k,有M[i,j]+M[j,k]>=M[i,k]。树T满足:
1.叶节点属于集合N;
2.边权均为非负整数;
3.dT(i,j)=M[i,j],其中dT(i,j)表示树上i到j的最短路径长度。
如下图,矩阵M描述了一棵树。
0 5 9 12 8
5 0 8 11 7
M= 9 8 0 5 1
12 11 5 0 4
8 7 1 4 0
树的重量是指树上所有边权之和。对于任意给出的合法矩阵M,它所能表示树的重量是惟一确定的,不可能找到两棵不同重量的树,它们都符合矩阵M。你的任务就是,根据给出的矩阵M,计算M所表示树的重量。下图是上面给出的矩阵M所能表示的一棵树,这棵树的总重量为15。
给定了树上每两个叶节点的距离,求边权和。先任意选一个点固定不动,然后将其他每一个节点单独考虑,对于每一个点,找到他与整棵树躯干联通的最小一段,将这一段删掉,剩下的仍是完整的树,因此累加答案,直到只剩下最开始固定的点为止。这段距离实际上就是这个点与固定点和这个点和其他没被删除的点重叠部分中最小的一个。
方便起见,选择最后的N号点固定,然后从一号点开始依次删除,那么没被删除的点就是它后面所有的点。
自己的代码:
#include<cstdio>
#define gm 31
using namespace std;
int n;
int dis[gm][gm];
inline int min(int a,int b)
{return a<b?a:b;}
int main()
{
freopen("weight.in","r",stdin);
freopen("weight.out","w",stdout);
while(scanf("%d",&n)==1)
{
if(!n) break;
int ans=0;
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
scanf("%d",&dis[i][j]),dis[j][i]=dis[i][j];
for(int i=1;i<n;i++)
{
int minn=2000000000;
for(int j=i+1;j<=n;j++)
minn=min(minn,dis[i][n]+dis[i][j]-dis[j][n]>>1);
ans+=minn;
}
printf("%d\n",ans);
}
return 0;
}