内生变量,外生变量;内生性问题和外生性问题,以及如何解决内生变量和外生变量

  • 内生变量(Endogenous Variables):是指在经济模型或其他系统模型中,其数值是由模型内部的因素相互作用所决定的变量。也就是说,内生变量的变化是由模型本身所描述的机制、关系和行为所导致的。例如,在一个简单的供求模型中,商品的价格和数量就是内生变量。价格会根据供给和需求的相互作用而变化,而数量也会随着价格的调整以及供给和需求曲线的移动而改变。
  • 外生变量(Exogenous Variables):是指在模型外部给定的变量,其数值不是由模型内部的机制决定的,而是被看作是模型的外部输入或外部环境因素。这些变量会对模型中的内生变量产生影响,但它们自身的变化是由模型外部的因素决定的。比如,在上述供求模型中,消费者的收入水平、生产技术水平、政府的税收政策等都可以看作是外生变量。消费者收入水平的变化会影响需求曲线的位置,从而影响商品价格和数量这些内生变量,但收入水平本身不是由供求模型内部的机制决定的。

内生性问题简介

  • 定义:内生性问题在经济学、社会学等众多学科的实证研究中较为常见,它是指模型中的解释变量与误差项存在相关关系,违背了经典线性回归模型中解释变量外生性的基本假设。简单来说,就是本该独立影响被解释变量的自变量,实际上却和模型中那些未被观察到的、影响被解释变量的其他因素(误差项里包含的因素)有了关联。
  • 产生原因及示例
    • 遗漏变量:当我们在构建回归模型时,没有把所有可能影响被解释变量的重要因素都纳入模型中,那些遗漏的变量就可能跑到误差项里去,并且和已有的自变量相关。比如研究教育水平对收入的影响,如果没有把个人能力这个因素考虑进来(个人能力很难准确测量并纳入模型),而个人能力既会影响收入,又可能和受教育水平相关(能力强的人可能更有机会获得更多教育),这样就产生了内生性问题。
    • 测量误差:自变量的测量不准确时也会引发内生性。例如用问卷调查来衡量人们的健康状况(作为自变量去解释医疗支出等被解释变量),问卷得到的健康状况数据可能由于受访者主观理解、记忆偏差等原因存在测量误差,这种误差进入误差项后,就可能与自变量产生相关性,导致内生性。
    • 双向因果关系:自变量和因变量之间可能存在相互影响的情况。比如研究犯罪率和警力配置的关系,一方面警力配置多可能会降低犯罪率;但另一方面,犯罪率高的地区往往也会促使政府增加警力配置,这样自变量(警力配置)和因变量(犯罪率)互为因果,就出现了内生性问题。

外生性问题简介

  • 定义:外生性是相对内生性而言的,指的是模型中的解释变量与误差项不相关,是在模型设定中我们期望达到的理想状态。外生变量通常被视为是由模型外部因素决定的,其变动独立于模型系统内部的变量,能对内生变量(被解释变量等)起到一种 “外部推动” 的作用。
  • 示例:在研究宏观经济中消费函数时,像消费者的可支配收入如果是外生给定的(比如由政府的税收、补贴政策等外部宏观调控因素决定,不受消费和误差项里那些随机因素影响),那么它就属于外生变量,能够相对 “干净” 地去解释消费支出(内生变量)的变化情况。

内生性问题的解决方法

  • 工具变量法
    • 原理:找到一个与内生解释变量相关,但与误差项不相关的变量作为工具变量。通过用工具变量替代内生变量参与到回归分析的第一阶段,来 “切断” 内生变量与误差项的联系,进而在第二阶段得到较为准确的估计结果。例如在研究教育水平(内生变量)对收入的影响时,以出生季度作为工具变量,因为出生季度可能会影响受教育年限(比如不同季度出生入学年龄规定等导致受教育时长有差异),但与个人能力等误差项里的因素无关。
    • 局限性:合适的工具变量往往很难寻找,需要满足相关性和外生性两个条件,而且使用工具变量法对样本量等也有一定要求,如果样本量太小,估计结果可能不稳定、不准确。
  • 固定效应模型
    • 原理:当处理面板数据(包含多个个体在多个时间点的数据)时,如果内生性是由于遗漏了不随时间变化的个体特征变量(比如个体的先天能力、地区的固有文化等)导致的,那么固定效应模型可以通过在模型中加入个体固定效应或者时间固定效应来控制这些不可观测的因素,从而一定程度上缓解内生性问题。例如研究不同企业的生产效率随时间变化与研发投入的关系,每个企业自身有一些不随时间改变的特质,用固定效应模型就可以把这些特质的影响控制住。
    • 局限性:它只能控制住那些不随时间变化(个体固定效应情况)或者不随个体变化(时间固定效应情况)的遗漏变量,如果内生性是由其他随时间和个体都变化的因素导致,或者存在双向因果等其他内生性原因,固定效应模型可能就无法完全解决问题。
  • 差分法
    • 原理:对变量进行差分处理,将水平值的回归转化为变化量的回归,这样可以消除一些不随时间变化的固定因素(这些因素往往是导致内生性的遗漏变量),从而减少内生性。比如对于时间序列数据或者面板数据,把相邻两期的数据做差后再进行回归分析,研究变量变化之间的关系。
    • 局限性:差分过程中可能会损失一些样本信息,而且如果原变量之间的关系是非线性的,差分后关系可能变得复杂难以准确估计,同时对于存在测量误差等其他内生性原因时,差分法的效果也可能有限。
  • 实验法和准实验法
    • 原理:实验法通过人为地控制自变量的取值,随机分配处理组和对照组,使得自变量的变化是外生给定的,从而避免内生性问题。例如药物临床试验,将患者随机分为服用药物组(处理组)和服用安慰剂组(对照组),观察药物对病情的影响,这样药物服用与否这个自变量就是外生的了。准实验法类似,不过它利用现实中自然发生的类似实验的情况,比如政策实施有地域差异等,把实施政策地区作为处理组,未实施地区作为对照组来研究政策效果,减少内生性。
    • 局限性:实验法往往面临伦理、成本等诸多限制,很难在很多社会科学研究场景中实施;准实验法依赖于合适的自然实验场景出现,如果找不到契合的对照情况,就没办法有效运用该方法。

外生性问题的保障方法

  • 合理的模型设定:在构建模型前,要基于理论和前人研究充分考虑哪些变量应该纳入模型,尽量减少遗漏重要变量的可能性,从源头上保障变量的外生性。比如研究房价影响因素时,综合考虑土地成本、周边配套设施、人口因素等多方面内容,依据相关经济学理论构建较为完善的模型。
  • 变量筛选与检验:对准备纳入模型的自变量进行相关性等分析,检查其是否与可能的误差项来源有潜在关联。可以利用一些统计检验方法,如豪斯曼检验等(常用于检验是否存在内生性,间接判断变量外生性情况),如果发现变量可能不具有外生性,及时调整变量或者采用合适方法处理内生性后再纳入模型。
  • 依据研究背景判断:结合具体的研究背景和学科知识,判断变量的性质。比如在宏观经济研究中,对于一些受国际大宗商品价格影响的小型开放经济体,国际大宗商品价格通常可视为外生变量(由国际市场供求等外部因素决定),可以合理地运用到模型中去解释国内相关经济变量的变化,研究者要根据这种背景准确识别外生变量并运用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值