散度的理解

散度的理解即推导

最近在看GCN,对拉普拉斯算子有很大的疑问,里面有涉及到散度这一个定义,看了很多,就来总结一下。
首先来看散度的定义(百度上直接复制的):散度(divergence)可用于表征空间各点矢量场发散的强弱程度,物理上,散度的意义是场的有源性。当div F>0 ,表示该点有散发通量的正源(发散源);当div F<0 表示该点有吸收通量的负源(洞或汇);当div F=0,表示该点无源。
从这里可以看出来,

散度是个标量,正负代表着是源还是汇

只这样看还是不清楚,要理解散度还要先看通量。

  1. 通量
    定义为:在流体运动中,单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的
    物理量。
    通量的物理意义
    当然,这是在实际生活中的例子,数学进行了抽象,B这是就是一个向量场了。

    当然还有这种向量场
    通量为零
    上图通量为零。
    通量的公式定义:
    Φ ( A ) = ∫ ∫ Σ A ⃗ n ⃗ d s \Phi(A)=\int\int_\Sigma \vec A\vec n ds Φ(A)=ΣA n ds
    A ⃗ \vec A A 是向量场中的向量,而且 n ⃗ \vec n n 为平面的法向量, d S ⃗ = n ⃗ d s d\vec S=\vec nds dS =n ds
    转换到三维空间中:
    设向量场 A ( x , y , z ) = P ( x , y , z ) i ⃗ + Q ( x , y , z ) j ⃗ + R ( x , y , z ) k ⃗ A(x,y,z) = P(x,y,z)\vec i+Q(x,y,z)\vec j+R(x,y,z)\vec k A(x,y,z)=P(x,y,z)i +Q(x,y,z)j +R(x,y,z)k
    则称沿场中某有向曲面 Σ \Sigma Σ的某一侧的面积分为向量场穿过曲面 Σ \Sigma Σ这一侧的通量
    A = P i ⃗ + Q j ⃗ + R k ⃗ − − − − ( 1 ) A=P\vec i+Q\vec j+R\vec k----(1) A=Pi +Qj +Rk (1)
    d S ⃗ = d y d z i ⃗ + d z d x j ⃗ + d x d y k ⃗ − − − − ( 2 ) d\vec S = dydz\vec i+dzdx\vec j+dxdy\vec k----(2) dS =dydzi +dzdxj +dxdyk (2)(分别在yoz,zox,xoy面上的投影)
    Φ = ∫ ∫ Σ P d y d z + Q d z d x + R d x d y − − − − ( 3 ) \Phi=\int\int_\Sigma Pdydz+Qdzdx+Rdxdy----(3) Φ=ΣPdydz+Qdzdx+Rdxdy(3)

  2. 散度
    向量场
    在上图向量场中,当把这个圈不断地缩小,极限趋近于零。这时候得到了散度。
    d i v A = lim ⁡ V → + 0 Φ ( A ) V div A = \lim_{V\rightarrow+0}\frac{\Phi(A)}{V} divA=limV+0VΦ(A)
    这个是散度的定义,注意里面的V为标量,其实应该写S的,毕竟是面积,但是其实是体积,比如一个粉笔盒,看起来里面是空的,是一个表面,其实构成了一个体积了;
    当V趋向于零时,即:
    d V = d x d y d z dV=dxdydz dV=dxdydz
    d Φ = d P d y d z + d Q d z d x + d R d x d y d\Phi=dPdydz+dQdzdx+dRdxdy dΦ=dPdydz+dQdzdx+dRdxdy
    两式相除得:
    d i v A = δ P δ x + δ Q δ y + δ R δ z div A = \frac{\delta P}{\delta x}+\frac{\delta Q}{\delta y}+\frac{\delta R}{\delta z} divA=δxδP+δyδQ+δzδR
    对于一个三维图像的梯度构成的向量场:
    d i v f ( x , y , z ) = δ 2 f δ x 2 + δ 2 f δ y 2 + δ 2 f δ z 2 div f(x,y,z) = \frac{\delta ^2f}{\delta x^2}+\frac{\delta ^2f}{\delta y^2}+\frac{\delta ^2f}{\delta z^2} divf(x,y,z)=δx2δ2f+δy2δ2f+δz2δ2f

这时候在回过头来看散度的定义,就可以利用散度来计算该点对它周围产生的影响。而GCN中的拉普拉斯算子就是离散形式下的散度。

  • 13
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值