散度的理解

散度的理解即推导

最近在看GCN,对拉普拉斯算子有很大的疑问,里面有涉及到散度这一个定义,看了很多,就来总结一下。
首先来看散度的定义(百度上直接复制的):散度(divergence)可用于表征空间各点矢量场发散的强弱程度,物理上,散度的意义是场的有源性。当div F>0 ,表示该点有散发通量的正源(发散源);当div F<0 表示该点有吸收通量的负源(洞或汇);当div F=0,表示该点无源。
从这里可以看出来,

散度是个标量,正负代表着是源还是汇

只这样看还是不清楚,要理解散度还要先看通量。

  1. 通量
    定义为:在流体运动中,单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的
    物理量。
    通量的物理意义
    当然,这是在实际生活中的例子,数学进行了抽象,B这是就是一个向量场了。

    当然还有这种向量场
    通量为零
    上图通量为零。
    通量的公式定义:
    Φ ( A ) = ∫ ∫ Σ A ⃗ n ⃗ d s \Phi(A)=\int\int_\Sigma \vec A\vec n ds Φ(A)=ΣA n ds
    A ⃗ \vec A A 是向量场中的向量,而且 n ⃗ \vec n n 为平面的法向量, d S ⃗ = n ⃗ d s d\vec S=\vec nds dS =n ds
    转换到三维空间中:
    设向量场 A ( x , y , z ) = P ( x , y , z ) i ⃗ + Q ( x , y , z ) j ⃗ + R ( x , y , z ) k ⃗ A(x,y,z) = P(x,y,z)\vec i+Q(x,y,z)\vec j+R(x,y,z)\vec k A(x,y,z)=P(x,y,z)i +Q(x,y,z)j +R(x,y,z)k
    则称沿场中某有向曲面 Σ \Sigma Σ的某一侧的面积分为向量场穿过曲面 Σ \Sigma Σ这一侧的通量
    A = P i ⃗ + Q j ⃗ + R k ⃗ − − − − ( 1 ) A=P\vec i+Q\vec j+R\vec k----(1) A=Pi +Qj +Rk (1)
    d S ⃗ = d y d z i ⃗ + d z d x j ⃗ + d x d y k ⃗ − − − − ( 2 ) d\vec S = dydz\vec i+dzdx\vec j+dxdy\vec k----(2) dS =dydzi +dzdxj +dxdyk (2)(分别在yoz,zox,xoy面上的投影)
    Φ = ∫ ∫ Σ P d y d z + Q d z d x + R d x d y − − − − ( 3 ) \Phi=\int\int_\Sigma Pdydz+Qdzdx+Rdxdy----(3) Φ=ΣPdydz+Qdzdx+Rdxdy(3)

  2. 散度
    向量场
    在上图向量场中,当把这个圈不断地缩小,极限趋近于零。这时候得到了散度。
    d i v A = lim ⁡ V → + 0 Φ ( A ) V div A = \lim_{V\rightarrow+0}\frac{\Phi(A)}{V} divA=limV+0VΦ(A)
    这个是散度的定义,注意里面的V为标量,其实应该写S的,毕竟是面积,但是其实是体积,比如一个粉笔盒,看起来里面是空的,是一个表面,其实构成了一个体积了;
    当V趋向于零时,即:
    d V = d x d y d z dV=dxdydz dV=dxdydz
    d Φ = d P d y d z + d Q d z d x + d R d x d y d\Phi=dPdydz+dQdzdx+dRdxdy dΦ=dPdydz+dQdzdx+dRdxdy
    两式相除得:
    d i v A = δ P δ x + δ Q δ y + δ R δ z div A = \frac{\delta P}{\delta x}+\frac{\delta Q}{\delta y}+\frac{\delta R}{\delta z} divA=δxδP+δyδQ+δzδR
    对于一个三维图像的梯度构成的向量场:
    d i v f ( x , y , z ) = δ 2 f δ x 2 + δ 2 f δ y 2 + δ 2 f δ z 2 div f(x,y,z) = \frac{\delta ^2f}{\delta x^2}+\frac{\delta ^2f}{\delta y^2}+\frac{\delta ^2f}{\delta z^2} divf(x,y,z)=δx2δ2f+δy2δ2f+δz2δ2f

这时候在回过头来看散度的定义,就可以利用散度来计算该点对它周围产生的影响。而GCN中的拉普拉斯算子就是离散形式下的散度。

<think>好的,我现在要帮用户理解机器学习中的KL。首先,用户可能对KL的基本概念和应用场景不太清楚,需要从定义入手。根据引用[2],KL是衡量两个概率分布差异的指标,这点很重要。用户提到的是“LK”,可能是拼写错误,应该先确认是KL。 接下来,用户想了解计算方法。根据引用[5],离和连续情况下的公式不同,我需要分别解释。离情况是求和,连续情况是积分,这一点要明确。另外,引用[3]提到KL可以分解为交叉熵减去熵,这部分需要详细说明,因为交叉熵和熵是信息论中的基础概念,用户可能也需要这些背景知识。 然后,用户可能想知道KL的性质,比如非对称性和非负性。引用[3]指出KL≥0,并且在p=q时等于0,这点必须强调。非对称性意味着D_KL(P||Q)≠D_KL(Q||P),需要举例说明,比如用高斯分布的不同顺序比较。 应用方面,引用[1]和[2]提到在变分方法和VAE中使用,这里需要结合具体例子,比如变分自编码器中用KL作为损失函数的一部分,帮助用户理解实际应用。此外,EM算法中的分解可能也是相关点,但用户的问题集中在机器学习,所以可能需要简要提及。 用户可能还容易混淆KL与其他量,比如交叉熵或JS,需要指出区别。例如,交叉熵是KL加上熵,而JS是对称的。这部分在引用[3]中有所涉及,可以引用。 最后,确保回答结构清晰,分点解释定义、计算方法、性质、应用场景和注意事项,并生成相关问题。需要检查引用是否正确,比如引用[1]关于变分方法,引用[5]关于公式,确保每个部分都有对应的引用支持。</think>### KL(Kullback-Leibler Divergence) #### 1. **定义与直观理解** KL(Kullback-Leibler Divergence)是衡量两个概率分布$P$和$Q$之间差异的非对称性量。在机器学习中,它常被用于评估模型分布$Q$对真实分布$P$的近似程。其核心思想是量化**用$Q$表示$P$时的信息损失**[^1][^3]。 数学定义如下: - **离分布**: $$D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$ - **连续分布**: $$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx$$ #### 2. **计算方法** KL的计算依赖于两个分布的表达式: 1. **交叉熵与熵的关系**: KL可分解为交叉熵$H(P,Q)$与熵$H(P)$之差: $$D_{KL}(P \parallel Q) = H(P,Q) - H(P)$$ 其中: - $H(P) = -\sum P(i) \log P(i)$ 是分布$P$的熵,表示编码$P$所需的最小平均信息量。 - $H(P,Q) = -\sum P(i) \log Q(i)$ 是交叉熵,表示用$Q$编码$P$所需的平均信息量。 2. **实际计算示例**: 假设离分布$P=[0.2, 0.8]$,$Q=[0.5, 0.5]$,则: $$D_{KL}(P \parallel Q) = 0.2 \log \frac{0.2}{0.5} + 0.8 \log \frac{0.8}{0.5} \approx 0.2 \cdot (-0.916) + 0.8 \cdot 0.47 \approx 0.14$$ #### 3. **性质** - **非负性**:$D_{KL}(P \parallel Q) \geq 0$,当且仅当$P=Q$时取等。 - **非对称性**:$D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P)$。例如,若$P$是高斯分布,$Q$是均匀分布,两者顺序不同会导致结果不同。 - **信息论解释**:KL表示用$Q$近似$P$时所需的额外信息量(单位取决于对数底数,如bits或nats)[^5]。 #### 4. **机器学习中的应用** 1. **变分推断**: 在变分自编码器(VAE)中,KL用于约束潜在变量$z$的后验分布$q(z|x)$接近先验分布$p(z)$(如标准正态分布),以防止过拟合[^1]。 2. **EM算法**: 在期望最大化(EM)算法中,KL用于分解对数似然函数,通过优化下界来迭代更新模型参数[^1]。 3. **生成模型评估**: 生成对抗网络(GAN)等模型中,KL可作为分布匹配的损失函数(需结合其他技巧处理非对称性)[^2]。 #### 5. **注意事项** - **非对称性的影响**:选择$D_{KL}(P \parallel Q)$还是$D_{KL}(Q \parallel P)$需根据具体任务。前者更关注$P$的高概率区域,后者更关注$Q$的高概率区域。 - **与交叉熵的关系**:在分类任务中,最小化交叉熵等价于最小化KL,因为$H(P)$是固定值[^3]。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值