数据、函数和模型(对象)迁移到GPU上(pytorch)

本文介绍了在深度学习训练中如何将数据、函数和模型迁移到GPU上,包括使用.cuda()和.cpu()方法以及.to(device)进行设备指定。强调了所有元素必须在同一设备上,否则会导致错误,并提供了将模型放入GPU的注意事项。
摘要由CSDN通过智能技术生成

数据、函数和模型(对象)迁移到GPU上

在训练深度学习模型的时候我们经常需要把数据、函数和模型(对象)迁移到GPU上,其法方法都是一样的。

1、.cuda()和.cpu()

.cpu()函数将目标放到cpu上,如:

data.cpu()
func.cpu()
model.cpu()

.cuda()将数据、函数和模型放于GPU上。

  • 指定某个GPU
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "2
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值