洛谷P5651 基础最短路练习题

文章介绍了如何处理一道图论问题,题目保证图中不存在边权异或和不为0的简单环。通过使用BFS(广度优先搜索)算法,计算每个节点到源点的路径异或和,从而可以快速求解任意两点间路径的异或和,无需考虑环的影响。
摘要由CSDN通过智能技术生成

题目:洛谷P5651 基础最短路练习题


题中有一句话:
保证 G 中不存在简单环使得边权异或和不为 0。
也就是说经过环时走的两条路的边权异或和为0,而题目求的是路径异或和,那么这两条路走哪边都是一样的
于是可以随便选一边,也就是不管环,直接bfs求路径,x,y之间任意路径是等价的
而且由于异或的性质,设dis[x]为x到源点的路径异或和,那么x到y的路径异或和就是dis[x] ^ dis[y](因为从源点到x的路径是一样的,异或一下没了)
综上所述只要跑一遍bfs,把dis处理出来,就能处理所有的询问

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
#define N 100005
#define M 400005

int head[N], vis[N], dis[N];
int ver[M], w[M], nt[M];
int tot = 0;
int n, m, q;

void Add(int x, int y, int z)
{
	tot++;
	ver[tot] = y;
	w[tot] = z;
	nt[tot] = head[x];
	head[x] = tot;
}

void bfs()
{
	memset(vis, 0, sizeof vis);
	for (int i = 2; i <= n; i++)
		dis[i] = 100000000;
	dis[1] = 0;
	queue<int> q;
	q.push(1);
	while (q.size())
	{
		int x = q.front();
		vis[x] = 1;
		q.pop();
		for (int i = head[x]; i; i = nt[i])
		{
			int y = ver[i];
			if (!vis[y])
			{
				dis[y] = dis[x] ^ w[i];
				q.push(y);
			}
		}
	}
}

int main()
{
	cin >> n >> m >> q;
	for (int i = 0; i < m; i++)
	{
		int x, y, z;
		cin >> x >> y >> z;
		Add(x, y, z);
		Add(y, x, z);
	}
	bfs();
	while (q--)
	{
		int x, y;
		cin >> x >> y;
		cout << (dis[x] ^ dis[y]) << endl;
	}
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值