洛谷 P1158 导弹拦截
经过 11年的韬光养晦,某国研发出了一种新的导弹拦截系统,凡是与它的距离不超过其工作半径的导弹都能够被它成功拦截。当工作半径为 0时,则能够拦截与它位置恰好相同的导弹。但该导弹拦截系统也存在这样的缺陷:每套系统每天只能设定一次工作半径。而当天的使用代价,就是所有系统工作半径的平方和。
某天,雷达捕捉到敌国的导弹来袭。由于该系统尚处于试验阶段,所以只有两套系统投入工作。如果现在的要求是拦截所有的导弹,请计算这一天的最小使用代价。
输入输出格式
输入格式:
第一行包含 4 4个整数x1、y1 、x2、y2,每两个整数之间用一个空格隔开,表示这两套导弹拦截系统的坐标分别为(x1, y1)(x1 ,y1)、(x2, y2)(x2,y2 )。 第二行包含 11 个整数 NN,表示有 NN颗导弹。接下来 NN行,每行两个整数 x,yx,y,中间用 一个空格隔开,表示一颗导弹的坐标(x, y)(x,y)。不同导弹的坐标可能相同。
输出格式:
一个整数,即当天的最小使用代价。
思路
按距离顺序枚举一个系统拦截的导弹,加上剩下导弹到另一系统的最大值,取最小值
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int MAXN=100050;
typedef long long LL;
struct T
{
LL d1,d2;
}a[MAXN];
int m[MAXN];
bool cmp(T a,T b)
{
return a.d1<b.d1;
}
int main(){
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
int n;
scanf("%d",&n);
for(LL i=0;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[i].d1=(x-x1)*(x-x1)+(y-y1)*(y-y1);
a[i].d2=(x-x2)*(x-x2)+(y-y2)*(y-y2);
}
sort(a,a+n,cmp);
m[n-1]=a[n-1].d2;
for(int i=n-2;i>=0;i--)
{
m[i]=m[i+1]>a[i].d2?m[i+1]:a[i].d2;
}
//m数组储存从后往前d2的最大值
LL ans=m[0]+a[n-1].d1;
for(int i=0;i<n;i++)
{
ans=min(ans,m[i+1]+a[i].d1);
}
//第i个导弹分配给了1,所以是加m[i+1]
printf("%lld",ans);
return 0;
}
m数组的使用既保留了排好的顺序,又方便了d2最大值到寻找 所以还是很佩服写代码的大佬的