Seung-Yim Yau
码龄10年
关注
提问 私信
  • 博客:250,043
    250,043
    总访问量
  • 160
    原创
  • 71,678
    排名
  • 302
    粉丝
  • 1
    铁粉
  • 学习成就

个人简介:业精于勤,荒于嬉;行成于思,毁于随。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2014-12-12
博客简介:

小秋在路上~

博客描述:
Good Luck!
查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    38
    当月
    0
个人成就
  • 获得316次点赞
  • 内容获得137次评论
  • 获得563次收藏
  • 代码片获得460次分享
创作历程
  • 60篇
    2024年
  • 2篇
    2020年
  • 24篇
    2019年
  • 57篇
    2018年
  • 17篇
    2016年
  • 1篇
    2015年
  • 1篇
    2014年
成就勋章
TA的专栏
  • 传统版图像拼接
    38篇
  • 深度学习版图像拼接
    17篇
  • 次模优化
    4篇
  • 深度学习(基础版)
    3篇
  • 学习OpenCV(基础版)
    18篇
  • 数学模型与数学实验(本科版)
  • 运筹学(本科版)
  • Matlab程序设计(本科版)
  • C++程序设计(本科版)
  • Java程序设计(本科版)
  • 日常操作(小笔记)
    12篇
  • 日常心得(小笔记)
    3篇
  • 数值优化(本科版)
    14篇
  • 数据结构与算法(本科版)
    8篇
  • 图像分割
    1篇
  • OpenCV-Python
    31篇
  • Image Registration(Alignment)
  • Image Warping(Reprojection)
    2篇
  • Image Blending
兴趣领域 设置
  • 编程语言
    python
  • 数据结构与算法
    算法
  • 人工智能
    opencv计算机视觉深度学习mxnetpytorch
  • 操作系统
    linux
  • 数学
    数学建模
  • IT工具
    vimeditplus
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python随机生成20个自编车牌(前两个是字母,后三个是数字)

【代码】Python随机生成20个自编车牌(前两个是字母,后三个是数字)
原创
发布博客 2024.10.27 ·
159 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏

(阅读笔记CVIU2024)Multimodel fore-/background alignment for seam-based parallax-tolerant image stitching

大视差图像拼接是一个具有挑战性的计算机视觉问题。尽管提出了现有的基于接缝的方法来获得令人满意的结果,但是仍然会发生诸如对象错位、消失和重复之类的问题。针对这些问题,本文提出了一种新的基于接缝的视差容差图像拼接方法,该方法利用多个扭曲模型精确对齐背景和前景区域. 为了基于深度变化对象的特征对应性估计各种空间平滑模型,引入了一种迭代算法,该算法通过为数据分配权重来选择内点并求解网格扭曲模型。此外,我们在选择和分组未对齐特征对的基础上构造前景像素的匹配置信度,从而惩罚接缝切割的重复。
原创
发布博客 2024.05.16 ·
270 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

(阅读笔记arXiv2023)Seam-guided local alignment and stitching for large parallax images

在图像拼接的合成步骤中,特别是对于具有视差的图像,接缝切割方法已经被证明是有效的。然而,接缝切割的有效性通常依赖于图像的粗略对齐,使得图像中存在一个局部区域,在该区域内可以找到看似合理的接缝,对于视差较大的图像,现有的对齐方法往往达不到预期的效果。本文提出了一种以接缝质量评价为指导的局部对齐和拼接方法. 首先,利用现有的图像对齐和接缝分割方法计算出初始接缝,并对接缝处的像素质量进行评价。然后,对于低质量的像素,在对齐图像中分离其封闭块,并通过SIFT流提取修改的稠密对应来局部对齐它们。
原创
发布博客 2024.05.11 ·
1113 阅读 ·
14 点赞 ·
1 评论 ·
11 收藏

(阅读笔记 arXiv2023)Parallax-Tolerant Image Stitching with Epipolar Displacement

Yu, J., Yu, Y., & Da, F. (2023). Parallax-Tolerant Image Stitching with Epipolar Displacement Field. arXiv preprint arXiv:2311.16637.
原创
发布博客 2024.04.01 ·
176 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Parallax-Tolerant Image Stitching with Epipolar Displacement

发布资源 2024.04.01 ·
pdf

Learning edge-preserved image stitching from

发布资源 2024.03.31 ·
pdf

A view-free image stitching network based on global homography

发布资源 2024.03.30 ·
pdf

学习次模函数-第2章 定义

次模函数可以由几个等价的性质来定义,我们现在就来介绍。加法测度是集合函数的第一个例子,其中基数是最简单的例子。众所周知的基数性质是,对于任意两个集合,则,这推广到所有的加法测度。当且仅当,前面的等式对于的所有子集一个集合函数是次模的当且仅当,对于所有的子集,我们有:。注意,如果一个函数是次模的,并且使得(我们总是假设),则对于任意两个不相交的集合,则,即: 次模性意味着次可加性(但反之则不成立)。如前所述,次模函数的最简单的例子是基数(例如,是。
原创
发布博客 2024.03.24 ·
461 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

学习次模函数-第1章 引言

在这本专著中,次模函数的理论以一种独立的方式呈现,所有结果都是从机器学习中常见的凸分析的第一原理证明的,而不是依赖于组合优化和传统的理论计算机科学概念,如拟阵或流(见,例如, [72]有关这些方法的参考书)。此外,我们提出的算法是基于传统的凸优化算法,如单纯形法线性规划,二次规划的有效集方法,椭球方法,切割平面,和条件梯度。,在计算机科学和应用数学的许多领域中有应用,例如机器学习[125,157,117,124],计算机视觉[31,96],运筹学[98,182],电气网络[162]或经济学[203]。
原创
发布博客 2024.03.24 ·
522 阅读 ·
9 点赞 ·
2 评论 ·
1 收藏

Learning with Submodular Functions: A Convex Optimization Perspe

发布资源 2024.03.24 ·
pdf

Learning pixel-wise alignment for unsupervised image stitching

发布资源 2024.03.24 ·
pdf

阅读笔记(MM2023)Learning pixel-wise alignment for unsupervised image stitching

图像拼接旨在对同一视图中的一对图像进行对齐。对于图像拼接来说,生成具有自然结构的精确对齐是一个挑战,因为在非共面的实际场景中,没有更宽视场图像作为参考。在本文中,我们提出了一个无监督图像拼接框架,突破了单应性估计中的共面约束,实现了在有限重叠区域下的精确像素级对齐。首先,我们通过迭代密集特征匹配结合误差控制策略来生成全局变换,以减轻由大视差引入的差异。
原创
发布博客 2024.03.23 ·
1204 阅读 ·
16 点赞 ·
2 评论 ·
17 收藏

阅读笔记(ICIP2023)Rectangular-Output Image Stitching

图像拼接的目的是将两幅视场重叠的图像进行拼接,以扩大视场(FoV)。然而,现有的拼接方法拼接的图像不规则,需要进行矩形化处理,耗时且容易出现不自然的现象。本文提出了第一个端到端框架--矩形输出深度图像拼接网络(RDISNet),该框架可以将两幅图像直接拼接成一幅标准的矩形图像,同时学习图像对之间的颜色一致性并保持内容的真实性。为了进一步保留拼接图像中大对象的结构,我们设计了一个扩张的BN-RCU块来扩展RDISNet的感受野,以提取丰富的空间上下文。
原创
发布博客 2024.03.23 ·
972 阅读 ·
8 点赞 ·
0 评论 ·
8 收藏

阅读笔记(ICIP2023)Rectangular-Output Image Stitching

发布资源 2024.03.23 ·
pdf

(Neurocomputing21)Image stitching via deep homography estimation

发布资源 2024.03.22 ·
pdf

阅读笔记(arXiv2022)Submodularity In Machine Learning and Artificial Intelligence

在本文中,我们提供了次模性和超模性及其属性的简要回顾。我们提供了大量次模性定义;许多示例次模函数及其推广的完整描述;离散约束的示例;基本算法的讨论,包括最大化、最小化和其他操作;对连续次模扩展的简要概述;以及一些历史应用。然后我们转向次模性在机器学习和人工智能中的用途,包括总结,我们提供了在自然语言处理中的抽取式和抽象式总结、数据蒸馏和凝聚、数据子集和特征选择之间的差异和共性的完整说明。
原创
发布博客 2024.03.20 ·
996 阅读 ·
24 点赞 ·
0 评论 ·
12 收藏

Warping Residual Based Image Stitching for Large Parallax

发布资源 2024.03.19 ·
pdf

阅读笔记(CVPR2020)Warping Residual Based Image Stitching for Large Parallax

图像拼接技术将在不同观看位置处捕获的两个图像对齐到单个较宽图像上。当捕获的3D场景不是平面的并且相机基线大时,两个图像表现出视差,其中场景结构的相对位置与每个视图非常不同。现有的图像拼接方法往往无法对视差较大的图像进行拼接。为此,提出了一种基于扭曲残差概念的图像拼接算法。我们首先估计多个单应性,并找到它们在两个图像之间的内部特征匹配。然后,我们评估每个特征匹配相对于多个单应性的翘曲残差。
原创
发布博客 2024.03.19 ·
358 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

(ICCV 2023)Parallax-Tolerant Unsupervised Deep Image Stitching

发布资源 2024.03.19 ·
pdf

TIP2021-UDIS

发布资源 2024.03.17 ·
pdf
加载更多