线性表的抽象数据类型
ADT 线性表(List)
Data
线性表的数据对象集合为{a1,a2,...an},每个元素的类型均为DataType。
其中除第一个元素a1外,每一个元素有且只有一个直接前驱元素,除了最后一个元素an外,每一个元素有且只有一个直接后继元素。
数据元素之间的关系是一一对应的。
在较复杂的线性表中,一个数据元素可以由若干个数据项组成。
Operation
InitList(*L): 初始化操作,建立一个空的线性表L
ListEmpty(L): 若线性表为空,返回true,否则返回false
ClearList(*L): 将线性表清空
GetElem(L,i,*e):将线性表L中的第i个位置元素值返回给e
LocateElem(L,e):在线性表L中查找与给定值e相等的元素,如果查找成功,返回该元素在表中的序号; 否则,返回0表示失败。
ListInsert(*L,i,e):在线性表L中的第i个位置插入新元素e
ListDelete(*L,i,*e):删除线性表L中的第i个位置元素,并用e返回其值
ListLength(L): 返回线性表L的元素个数
endADT
3.1线性表的顺序存储结构
-
用一段地址连续的存储单元依次存储线性表的数据元素。
-
线性表的每个数据元素的类型都相同,所以可以用一维数组来实现顺序存储结构,即:将第一个数据元素存到数组下标为0的位置中,接着把线性表相邻的元素存储在数组中相邻的位置。
-
描述顺序存储结构的三个属性:
- 存储空间的起始位置:数组data,它的存储位置就是存储空间的存储位置。
- 线性表的最大存储容量:数组长度MaxSize。(存放线性表的存储空间的长度)
- 线性表的当前长度:length。(线性表中当前元素的个数,随着线性表的插入等操作,这个量是变化的)
-
在任意时刻,线性表的长度<=数组的长度
-
地址的计算方法:
- 假设每个数据元素占用c个存储单元: L O C ( a i ) = L O C ( a 1 ) + ( i − 1 ) ∗ c LOC(a_i)=LOC(a_1)+(i-1)*c LOC(ai)=LOC(a1)+(i−1)∗c
- 通过这个公式算出任意位置的地址,都是相同的时间。
- 存取的时间性能为O(1),具有这一特点的存储结构成为随机存取结构
3.1.1插入与删除
-
获得元素(GetElem):
算法思路:
- 只要i的数值在数组下标范围内,就是把数组第i-1下标的值返回即可。
GetElem(L,i): if L.length==0 or i<1 or i>L.length: return ERROR e = L.data[i-1] return e
-
插入(ListInsert)
算法思路:
- 如果插入位置不合理(顺序线性表已满、当i不在范围内时),抛出异常。
- 如果线性表长度>=数组长度,则抛出异常或动态增加容量。
- 从最后一个元素开始向前遍历到第i个位置,分别将它们都向后移动一个位置。
- 将要插入元素填入位置i处。
- 表长加1.
```python
ListInsert(L,i,e):
if L.length == MAXSIZE or i<1 or i>L.length+1: # 顺序表已满、i不在范围内
return ERROR
if i<L.length: # 若插入的数据位置不在表尾
k = L.length -1
while k >= i-1: # 将要插入位置后的数据元素向后移动一位
k--
L.data[k+1] = L.data[k]
L.data[i-1] = e # 将新元素插入
L.length++ # 表长加1
```
- 删除(ListDelete)
算法思路:
- 如果删除位置不合理,抛出异常。
- 取出删除元素。
- 从删除元素位置开始遍历到最后一个元素位置,分别将它们向前移动一个位置。
- 表长减1.
```python
ListDelete(L,i):
if L.length==0 or i<1 or i>L.length: # 线性表为空、删除位置不正确
return ERROR
e = L.data[i-1]
if i < L.length: # 如果删除的不是最后位置
k = i
while k < L.length: # 将删除位置后继元素前移
k++
L.data[k-1] = L.data[k]
L.length--
```
-
插入和删除的时间复杂度
最坏的情况,元素插入到第一个位置或者删除第一个元素,那么就要移动所有元素向后或者向前,所以时间复杂度为O(n).
3.1.2线性表顺序存储结构的优缺点
优点:
- 不用为表示表中元素之间的逻辑关系而增加额外的存储空间。
- 可以快速存取表中任意位置的元素O(1)
缺点:
- 插入和删除操作需要移动大量元素O(n)
- 当线性表长度变化较大时,难以确定存储空间的容量
- 造成存储空间的“碎片”
适用场合:
- 比较适合元素个数变化不大,而更多是存取数据的应用