这题是约瑟夫环的变种,线性的删除,每次删到不能删了就从头开始,所以和约瑟夫环有点不同。
可以用线段树水过去,每次找区间里和为k的位置,然后删除,不知道效率怎么样
正解是递推,因为是一行一行的删除,所以可以预处理递推出第几个人是在第几层死的,如果imodk==1的时候说明这人在第一层死,其余情况就是a[i]=a[i−i−1k−1]+1,因为上一轮删掉i−1k+1个人之后,这一轮就变成上一轮的情况了
然后想个办法预处理出删除的顺序把,我是用前向星记录的
代码:
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 200005
#define MAXN 1000005
#define maxnode 205
#define sigma_size 26
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
int a[3000005];
pii c[3000005];
int head[3000005];
int main(){
int t;
cin>>t;
while(t--){
int n,k,q;
scanf("%d%d%d",&n,&k,&q);
int tot=0;
int cnt=0;
for(int i=1;i<=n;i++) head[i]=-1;
for(int i=1;i<=n;i++){
if((i-1)%k==0) a[i]=1;
else a[i]=a[i-(i-1)/k-1]+1;
c[tot]=mk(i,head[a[i]]);
head[a[i]]=tot++;
}
for(int i=1;i<=n;i++){
if(head[i]==-1) break;
int k=cnt+1;
for(int j=head[i];j!=-1;j=c[j].second){
a[++cnt]=c[j].first;
}
int x=cnt;
while(k<x){
swap(a[k],a[x]);
k++,x--;
}
}
while(q--){
int x;
scanf("%d",&x);
printf("%d\n",a[x]);
}
}
return 0;
}