题目描述
给你一个按照非递减顺序排列的整数数组 nums
,和一个目标值 target
。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8 输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6 输出:[-1,-1]
示例 3:
输入:nums = [], target = 0 输出:[-1,-1]
思路:用两个二分法分别找出左边界与右边界
收获:通过对比学习“代码随想录”官方代码,获得了以下启发
1. 用循环中的值在循环中的自然变化控制循环结束,不用多余复杂条件--巧妙设计
2. 写子函数,规范步骤。明确输出值,最后一起调整输出。(自己写的特殊条件不太有统筹规划性,容易错漏)
“代码随想录”官方代码(C++):
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int leftBorder = getLeftBorder(nums, target);
int rightBorder = getRightBorder(nums, target);
// 情况一
if (leftBorder == -2 || rightBorder == -2) return {-1, -1};
// 情况三
if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1};
// 情况二
return {-1, -1};
}
private:
int getRightBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
int rightBorder = -2; // rightBorder没有被赋值时
while (left <= right) {
int middle = left + ((right - left) / 2);
if (nums[middle] > target) { // right大小控制循环何时结束
right = middle - 1;
} else {
// 寻找右边界,nums[middle] == target的时候更新left
left = middle + 1;
rightBorder = left; // (右边界用最大left找)超出一位
}
}
return rightBorder;
}
int getLeftBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
int leftBorder = -2; // leftBorder没有被赋值的情况
while (left <= right) {
int middle = left + ((right - left) / 2);
if (nums[middle] >= target) {
// 寻找左边界,nums[middle] == target的时候更新right
right = middle - 1;
leftBorder = right; // (左边界用最大right找)超出一位
} else {
left = middle + 1; // left大小控制循环结束
}
}
return leftBorder;
}
};
我的代码(python)
class Solution(object):
def searchRange(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
left = 0;
right = len(nums)-1;
# 记录左,右边界中间值的的数组,用于判断循环结束
left_mid = [];
right_mid = [];
if not nums or nums[right]<target or nums[left]>target:
return [-1,-1];
if len(nums) < 2:
if nums[0]==target:
return [0,0];
else: return [-1,-1];
if len(nums) == 2:
if nums[0]==target and nums[1] == target:
return [0,1];
elif nums[0] == target and nums[1] != target:
return [0,0];
elif nums[0] != target and nums[1] == target:
return [1,1];
else: return [-1,-1];
# 寻找右边界
while left<=right:
mid = int(left+right)/2;
right_mid.append(mid);
if target > nums[mid]:
left = mid+1;
elif target < nums[mid]:
right = mid-1;
else:
left = mid;
if len(right_mid)>=2 and (right_mid[-1]==right_mid[-2]) and nums[mid]==target:
if nums[mid]==nums[right]:
right_border = right;
else: right_border = mid;
break;
elif len(right_mid)>=2 and (right_mid[-1]==right_mid[-2]) and nums[mid]!=target: right_border = -1; break;
else: right_border = -1
# 寻找左边界
left = 0;
right = len(nums)-1;
while left<=right:
mid = int(left+right)/2;
left_mid.append(mid);
if target > nums[mid]:
left = mid+1;
elif target < nums[mid]:
right = mid-1;
else:
right = mid;
if len(left_mid)>=2 and (left_mid[-1]==left_mid[-2]) and nums[mid]==target:
if nums[mid]==nums[left]:
left_border = left;
else: left_border = mid;
break;
elif len(left_mid)>=2 and (left_mid[-1]==left_mid[-2]) and nums[mid]!=target: left_border = -1; break;
else: left_border = -1;
if left_border == -1 and right_border != -1:
left_border = right_border;
if left_border != -1 and right_border == -1:
right_border = left_border;
return [left_border,right_border];