• 博客(141)
  • 收藏
  • 关注

原创 以 StarRocks 4.0 为核,引领企业迈入 AI 实时湖仓新时代

StarRocks 提供原生的湖仓一体能力,支持对 Iceberg、Hudi、Paimon 等主流数据湖格式进行高性能读写,并以统一的 Catalog 管理权限,帮助企业告别繁杂的 ETL 和多套组件并存现状,构建一个开放、统一、高效的 One Data 体系。通过企业版产品镜舟数据库,在 StarRocks 内核能力的基础上,增加了安全管控、灾备、可视化运维等企业级功能,致力于帮助更多企业构建卓越的数据分析系统,共同拥抱数据驱动的智能未来。,并稳定支撑每日超 17 万次的高并发查询。

2025-11-28 20:48:55 890

原创 告别“数据孤岛”,基金公司如何构建秒级响应的统一分析底座?

该基金公司的实践证明,在数据体量庞大、业务逻辑复杂的金融场景下,StarRocks 不仅能解决金融机构查询慢和成本高的问题,更能释放数据的实时价值,赋能投研与营销的每一次决策。例如,业务分析师想要进行“某特定客群在不同市场行情下的资产留存分析”,由于查询涉及海量历史流水与客户标签的关联,系统响应往往超过 5-10 分钟,甚至直接超时失败。通过 MPP 架构的极速计算能力,替代了原有的慢速跑批,报表延迟骤降,业务报表的整体数据准备时间从 6 小时 压缩至 5 分钟以内,真正实现了T+0的动态经营分析。

2025-11-28 18:29:25 396

原创 载誉而归!镜舟科技亮相2025 OSCAR开源产业大会,荣获“开源+商业化产品”奖

加速与主流数据湖、ETL、治理、BI、调度及 RAG 组件的深度兼容,镜舟科技将继续扮演好社区贡献者与商业赋能者的双重角色,与全球开发者、用户及合作伙伴一道,共同推动StarRocks 生态的持续壮大,以卓越的技术与可靠的服务,赋能更多企业在数字经济时代赢得先机。该奖聚焦开源技术的工程化能力与商业落地价值,旨在表彰那些不仅在开源社区拥有强大技术影响力,更成功地将开源技术转化为成熟、可靠的商业产品,并创造出显著市场价值的标杆企业。等核心议题,镜舟科技与来访嘉宾展开了深入的商业场景探讨与技术交流。

2025-10-30 13:35:48 202

原创 中国企业出海新征程:数据基础设施如何成为全球化竞争的关键变量

企业可以轻松摄取多源数据,无论是来自 Kafka、Flink 的实时流,还是 Spark、S3 的批量数据,都能在统一平台上进行处理和分析。但我们更关注的是,这种性能优势如何转化为客户的业务价值——更快的查询意味着更及时的决策,更低的成本意味着更高的投资回报。在这个过程中,数据不仅是企业出海的重要资产,更正在成为企业在国际市场中沟通、决策和竞争的通用语言。面对出海企业的数据困境,镜舟科技基于开源项目 StarRocks 的技术积累,在推动新一代数据基础设施发展的过程中,形成了对行业趋势的深度洞察。

2025-10-23 17:40:29 624

原创 谁能更快交付,谁就能更快赢得市场

正如新能源让更多家庭第一时间享受电动车的便捷,StarRocks 让企业第一时间享受数据带来的决策红利。以 StarRocks 为代表的新一代数据平台,通过其统一、极速、弹性的架构,正在打破数据壁垒,加速数据价值的流动。这不仅是IT基础设施的升级,更是企业迈向“新质生产力”,在激烈竞争中赢得先机的重要战略布局。

2025-10-19 12:49:50 935

原创 什么是倒排索引(Inverted Index)?

深入了解倒排索引的核心原理、应用场景及StarRocks数据库中的实现方式,提升数据检索效率的关键技术解析。

2025-09-04 11:18:13 700

原创 告别 Hadoop,拥抱 StarRocks!政采云数据平台升级之路

StarRocks 为政企采购数字化领域的不断创新发展注入源源不断的“数据动力”。

2025-09-03 16:29:38 718

原创 结构化数据与非结构化数据的区别、特点和应用场景

本文深入探讨结构化数据与非结构化数据的本质区别、技术特点和实际应用场景。通过对比分析两种数据类型的存储方式、处理难度和分析方法,结合StarRocks在混合数据处理方面的技术优势,为企业数据架构选择和实时分析提供实用指导。

2025-08-23 12:05:05 611

原创 StarRocks 亮相 Cloudera 新加坡 EVOLVE25 大会,携手行业领袖探索 AI 创新未来

2025 年 8 月 7 日,Cloudera 的年度数据与 AI 大会 EVOLVE25 在新加坡拉开帷幕,聚焦企业 AI、混合云和现代数据架构等前沿领域,探讨如何通过云原生体验赋能企业数据价值挖掘与 AI 创新应用。本次大会以“为主题,汇聚了来自全球各地的技术专家、行业领袖和创新企业,共同探讨如何通过云体验推动 AI 驱动的创新并改变各行业的客户体验。探讨组织如何扩展 AI 以改变运营模式、提升决策能力并推动创新,同时介绍最新的生产力、协作、安全和治理工具。

2025-08-09 11:03:21 461

原创 什么是列存储(Columnar Storage)?深度解析其原理与应用场景

深入了解列存储技术的核心原理、关键优势及最佳应用场景,掌握这一数据分析利器如何为企业带来10-100倍查询性能提升。

2025-08-03 12:03:30 896

原创 数据资产是什么?

探索数据资产的定义、价值与管理方法,了解如何通过StarRocks实时数据分析平台释放数据资产潜力,加速企业数字化转型。

2025-08-02 16:29:34 1017

原创 StarRocks vs ClickHouse:2025 年 OLAP 引擎终极对比指南

深度对比 StarRocks 与 ClickHouse 两大 OLAP 引擎的性能、架构与应用场景,助您在实时数据分析领域做出最佳技术选型决策。

2025-08-02 13:01:31 1283

原创 欢乐互娱:StarRocks 助力游戏数据平台实现极速分析与高效运营

在实际查询中,通过 Bitmap 索引技术,为每个用户标签创建 Bitmap 索引,利用位图压缩存储,使用bitmap_and()、bitmap_or()等函数动态组合标签条件,生成目标用户 ID 集合,对于一些高频使用的标签组合,通过物化视图进行预计算来加速查询。:对于道具流水、预警信息等,客服系统需要极高的实时性,特别是付费道具的流水,需要及时查询以响应客户反馈,欢乐互娱利用 StarRocks 进行批处理,每 2 分钟触发一次统计,并通过聚合表或视图加工,能够及时发现异常情况,响应问题。

2025-07-28 16:10:22 691

原创 数据湖产品全解析:2025 年主流解决方案选型指南

深入解析2025年主流数据湖产品,包括Databricks、Snowflake、AWS等,并结合StarRocks湖仓一体方案,助力企业高效构建现代数据架构。

2025-07-26 10:24:20 1263

原创 数据湖典型架构解析:2025 年湖仓一体化解决方案

探索2025年数据湖典型架构的最新趋势与实践,了解StarRocks如何通过湖仓一体化技术解决大数据分析挑战,提供企业级数据湖解决方案。

2025-07-25 17:25:45 1097

原创 什么是关系型数据库?全面解析 RDBMS 核心原理与应用实践

深入了解关系型数据库(RDBMS)的核心概念、工作原理及主流产品对比,助您选择最适合业务需求的数据库解决方案。

2025-07-25 10:56:57 768

原创 2025 年非关系型数据库全面指南:类型、优势

然而,随着技术的发展和业务需求的变化,传统的数据库分类边界正在逐渐模糊,融合型数据库解决方案正成为新的趋势。这种融合趋势催生了一批新型数据库产品,如 StarRocks、镜舟数据库等,它们既保留了关系型数据库的强一致性和 SQL 查询能力,又具备非关系型数据库的高扩展性和灵活性,为企业提供了更全面的数据管理解决方案。无论是传统的非关系型数据库还是新兴的融合型解决方案,选择适合的数据库技术都应该以业务需求为导向,以数据价值为中心,为企业的数字化转型和数据驱动决策提供坚实的技术基础。

2025-07-22 15:46:16 1720

原创 关系型数据库有哪些?2025年主流选择与企业选型指南

关系型数据库是基于关系模型的数据库管理系统,它将数据组织为相互关联的二维表格形式。这种数据库使用结构化查询语言(SQL)进行数据操作,并严格遵循ACID特性(原子性、一致性、隔离性和持久性),确保数据处理的可靠性和一致性。结构化数据管理:通过表格形式规范化存储数据ACID事务保证:确保数据操作的原子性、一致性、隔离性和持久性SQL标准支持:提供统一的查询语言,降低学习和使用门槛。

2025-07-22 10:05:06 1203

原创 告别 T+1!解密金融级实时数据平台的构建与实践

这套架构完整地捕获了所有数据的日内变更过程,满足监管对过程追溯的严格要求,也解决了因数据时点不一致导致的对账难题,为核心业务的合规性提供了坚实的技术保障。满足监管要求是其业务的合规底线。然而,在原有的 Impala 集群上,一个涉及多张大表、上亿数据的复杂关联查询,通常需要数小时才能返回结果,严重影响了分析师的工作效率。传统的每日批量抽取模式,只能获取截至抽取时间点的最终数据状态,过程中所有的中间状态(如从“低风险”到“中风险”,再到“高风险”)全部丢失,导致无法满足监管对过程追溯的合规要求。

2025-07-19 11:25:38 789

原创 什么是数据库同步软件?为什么要关注数据库同步技术?

数据库同步软件的核心是实现异构数据源之间的双向数据传输与同步。从技术架构上看,它通常包含数据捕获层、转换处理层和目标写入层三个主要组件。这种架构设计使得数据能够在不同类型、不同位置的数据库之间高效流动,同时保证数据的一致性和完整性。触发器模式:通过在源数据库设置触发器捕获变更,实现简单但可能影响源系统性能日志解析模式:通过读取数据库事务日志获取变更信息,对源系统影响小但实现复杂ETL 模式:通过定期批量提取、转换和加载数据,适合大规模处理但实时性较差。

2025-07-12 16:23:26 828

原创 数据中台产品是伪需求吗?

通过对企业数据管理现状、数据中台价值和实际案例的深入分析,我们可以得出更加客观的结论:数据中台本身既非完全的伪需求,也不是所有企业的必然选择,其价值取决于特定企业的实际情况和应用场景。数据中台是否为伪需求,答案不是简单的“是”或“否”,而是取决于企业的具体情况和应用场景。只有在充分理解自身需求和市场产品的基础上,才能做出明智的选择,真正发挥数据的价值,驱动业务创新和增长。

2025-07-12 12:02:59 818

原创 充电宝频频“爆雷”,你的生产追溯系统需要一场“极速”革命

制造业的数字化转型需要强大的数据基础设施支撑。StarRocks 自 3.X 版本引入了湖仓一体化架构,通过与 Apache Iceberg、Paimon 等数据湖深度集成,支持企业在单一平台上实现实时与离线分析。镜舟数据库基于开源 StarRocks 技术构建,结合企业级功能特性,为制造企业提供了一个统一、高效的数据分析平台。通过部分列更新、物化视图增量刷新、湖仓一体等核心技术能力,帮助企业同时解决供应链追溯和生产良率管控两大核心需求。

2025-07-07 11:06:52 856

原创 StarRocks × Tableau 连接器完整使用指南 | 高效数据分析从连接开始

手把手教你通过 StarRocks Tableau 连接器实现实时数据分析!涵盖下载、配置、性能调优全流程,解决常见报错问题,提升 BI 效率。【镜舟科技官方教程】

2025-07-05 11:27:57 1312

原创 什么是 MPP 数据库?解锁海量数据分析的关键技术

MPP(Massive Parallel Processing,大规模并行处理)数据库采用“分而治之”的思想,将查询任务分解成多个子任务,由多个计算节点并行执行,最后合并结果,从而大幅提升查询性能。现代 MPP 数据库已经打破了传统的“T+1”数据分析模式,通过与流式计算技术的结合,支持数据的实时摄入和分析,满足毫秒级业务决策需求。MPP 数据库支持千亿级数据的秒级响应,即使面对复杂的多表关联和聚合计算,也能保持稳定的高性能,实现数据探索的“思维不中断”。这种设计避免了资源竞争,使系统可以线性扩展。

2025-07-04 11:29:41 1194

原创 什么是即席查询?企业数据敏捷分析的新范式

即席查询正在成为企业数据决策的加速器,它不仅提升了决策速度,更重塑了企业的数据文化,让数据真正成为业务创新的驱动力。在数据驱动决策已成为企业标配的今天,掌握即席查询能力不再是锦上添花,而是决胜市场的必备武器。

2025-06-30 19:17:21 755

原创 数据可视化:5 分钟读懂其核心价值与技术实践

数据可视化是指将结构化或非结构化数据通过图形、图表等形式直观呈现的技术和方法。简单来说,它就像是一张“数据地图”,帮助人们在复杂的数据海洋中找到方向。与传统的表格和文本数据相比,可视化后的数据能够更直观地传递复杂信息,帮助分析人员和决策者快速抓住数据中的关键点。数据可视化的核心在于将抽象的数字转化为人类大脑更容易处理的视觉元素。我们的大脑天生就擅长处理视觉信息,研究表明,人类大脑处理图像的速度比处理文字快 60,000 倍。

2025-06-30 15:16:21 1169

原创 什么是数据聚合(Data Aggregation)?

在数据驱动的时代,我们每天产生海量信息,从刷抖音到网购下单,每个行为都在生成数据。然而,这些原始数据通常分散且孤立,难以直接展现完整图景。数据聚合技术应运而生,它如同数字世界的"整合者",将分散信息汇集成有价值的洞察,助力企业实现毫秒级查询响应,为精准决策提供强大支持。数据聚合(Data Aggregation)是将来自多个数据源的原子数据收集、处理并以汇总形式表达的过程。简单来说,它是将零散信息"归拢成册",形成结构化、可分析的数据集的技术过程 。在数据库领域,数据聚合通常通过 SQL 中的聚合函数实现,

2025-06-30 10:25:28 1292

原创 StarRocks 向量索引如何让大模型“记性更好”?

向量索引技术让 AI 不再局限于训练时固化的知识,而是能够动态调用外部知识库,实现“知识即服务”的能力,而 StarRocks 的向量索引实现为企业级应用提供了经济适用的落地路径。作为 StarRocks 的商业化公司,镜舟科技正积极推动向量索引技术在更多行业场景中的应用。未来,镜舟科技将继续优化向量索引性能,支持新鲜度检索与向上检索、混合检索、多路召回与自定义排序、文本预处理等功能,为企业提供更加完善的大模型记忆增强解决方案,助力各行业实现智能化转型。

2025-06-28 09:51:57 765

原创 什么是列数据库?全面解析列式存储的核心优势与应用场景

在传统的行式数据库中,数据是水平存储的,每一行记录被连续存放。而列式数据库则采用垂直存储方式,将同一列的数据存储在一起。行式存储:用户A的姓名、年龄、地址等所有信息连续存储列式存储:所有用户的姓名存储在一起,所有用户的年龄存储在一起想象一个包含用户信息的表格:在行式存储中,用户A的姓名、年龄、地址等所有信息会被连续存储;而在列式存储中,所有用户的姓名会被存储在一起,所有用户的年龄会被存储在一起,以此类推。

2025-06-27 14:09:45 1102

原创 什么是 QueryGPT?智能查询工具如何重塑信息检索的未来?

QueryGPT 是一款基于自然语言处理与 AI 的智能化查询引擎,它结合了 OpenAI GPT 的强大语言理解和生成能力,以及 Langchain 的灵活功能扩展性。通过 QueryGPT,用户只需使用日常语言提出问题,系统便能理解查询意图,自动转化为相应的数据操作,并以直观的方式呈现结果。QueryGPT 作为新一代数据查询工具,通过自然语言交互彻底改变了信息获取方式。它不仅提高了查询效率,还降低了数据分析门槛,使更多非技术人员能从数据中获取洞见。

2025-06-27 10:30:38 767

原创 用户行为分析:从概念到实践的全面指南

用户行为分析已从简单的流量统计工具,发展为企业数字化转型的核心驱动力。通过掌握其核心概念、技术基础和实践方法论,企业可以构建数据驱动的决策体系,深入理解用户需求,优化产品体验,最终实现业务增长和用户价值的双赢。

2025-06-24 18:44:18 710

原创 从传统Cube到现代化指标体系:物化视图驱动的指标平台升级之路

指标平台作为企业数据驱动决策的重要工具,对性能和可靠性有着极高的要求。镜舟科技致力于将 StarRocks 的极致性能转化为“更快的决策速度”,将开发效率的提升转化为“更敏捷的业务响应”,将数据的一致性转化为“更可靠的商业洞察”。未来,镜舟科技将继续秉持“开源+商业化”模式,不断投入 StarRocks 社区建设,同时打磨镜舟数据库(Mirrorship)的企业级特性,深化在金融、互联网、制造、零售等关键行业的应用。

2025-06-23 15:20:03 723

原创 实时监控、秒级决策:镜舟科技如何重塑融资融券业务数据处理模式

融资融券业务作为金融机构的重要业务增长点,其数据处理能力直接关系到风险管控水平和客户服务质量。镜舟科技基于 StarRocks 的解决方案,通过实时数据分析、数据湖加速和国产化适配等核心能力,成功帮助金融机构突破传统技术架构限制,将业务处理能力从 T+1 提升至分钟级甚至秒级,显著增强了实时风险监控和决策支持能力。镜舟科技的解决方案不仅能满足金融机构对业务的高性能、高可靠性需求,还能支持其在信创背景下的技术架构转型。

2025-06-12 17:43:29 1165

原创 HTAP 技术:融合事务与分析的数据处理新范式

随着数据量的爆炸式增长和业务对实时性要求的不断提高,传统的数据处理架构面临着前所未有的挑战。HTAP(Hybrid Transactional/Analytical Processing,混合事务/分析处理)技术的出现,正是为了打破在线事务处理(OLTP)和在线分析处理(OLAP)之间的传统壁垒。

2025-06-09 20:43:11 995

原创 从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

基于镜舟数据库构建的 GLH 湖仓一体平台,不仅解决了杭银消费金融在数据管理中面临的关键痛点,还为公司数字化转型提供了坚实的数据基础。通过构建“湖仓一体”的数据架构,公司实现了数据资产的整合与价值释放,为业务创新提供了强有力的数据支撑。

2025-06-06 13:51:58 1148

原创 什么是物化视图(Materialized View)?

物化视图并不是一个全新的概念,但它与我们熟知的传统视图有着本质区别。下表清晰对比了两者的主要差异:从本质上讲,物化视图是将查询结果物理化存储的数据库对象,它通过预先计算并持久化存储复杂查询的结果,从而在后续查询时直接返回预计算的数据,避免了重复的计算过程。详细技术原理可参考物化视图详解。从本质上看,物化视图是将时间复杂度转化为空间复杂度的经典案例,它用一定的存储空间换取查询时的计算资源节约,特别适合当今数据规模不断扩大而实时分析需求日益增长的业务环境。

2025-05-29 23:27:23 1284

原创 数据仓库分层 4 层模型是什么?

数据仓库分层 4 层模型是一种被广泛采用的架构设计,它将数据仓库划分为四个功能明确的层次:ODS 层、DWD 层、DWS 层和 ADS 层。每一层都有其特定的职责和处理逻辑,共同构成了一个完整的数据处理流程。

2025-05-29 21:40:27 1607

原创 数据仓库 vs 数据库:核心区别与应用场景全解析

OLTP(联机事务处理)数据库和OLAP(联机分析处理)数据库。OLTP 数据库是支持日常业务运营的实时事务处理系统。数据库的关键特征包括:数据以行和列的形式存储(类似电子表格)表之间存在明确定义的关系数据高度详细且可搜索适合处理实时、频繁的小型事务通常只存储最新状态的数据,历史数据有限想象一下,当你在线购物时,每一笔交易都会实时记录在电商平台的数据库中,确保库存、支付和物流信息的准确性和一致性。数据库的核心价值在于作为业务运营的“实时账本”,确保企业日常交易的可靠性和准确性。

2025-05-28 22:29:03 864

原创 湖仓融合的“最后一公里”:StarRocks 存算分离如何优化湖上实时分析?

镜舟科技作为社区主要贡献团队,成功帮助 50 多家用户上线存算分离架构,包括芒果 TV、吉利汽车、腾讯音乐、OPPO 等 ,并进一步验证了存算分离架构在实际业务场景中的价值。该架构不仅降低了存储成本,提升了查询性能,还简化运维工作,为企业数据战略提供了新的选择。通过将数据存储在低成本的对象存储中,同时利用高效的计算节点进行查询处理,实现了性能与成本的最佳平衡。StarRocks 3.X 版本开始,存算分离架构支持主键模型,通过简单的 update 语句,可以轻松实现数据的实时更新。

2025-05-25 11:37:00 1218

原创 什么是实时流数据?核心概念与应用场景解析

本文讨论了在数字经济时代实时流数据成为企业核心竞争力的背景下,对实时流数据的概念、处理流程、应用场景及未来趋势进行解析的内容。

2025-05-21 21:45:51 2162

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除