对于刚接触Stable Diffusion的小伙伴来说,面对五花八门的模型分类,是不是一头雾水?别慌!本文以CivitAI网站为例,结合实测经验,为你详解每类模型的功能、参数和应用场景,助你快速上手!
**
**
1.Checkpoint(基础模型)
技术原理:完整的生成模型,包含所有网络参数。
应用场景:通用图像生成、风格迁移。
推荐参数:Steps 25-35,CFG 7-9。
协同推荐:搭配VAE和LoRA使用效果更佳。
2.LoRA(低秩微调模型)
技术原理:通过低秩矩阵分解微调模型,修改特定特征。
应用场景:快速风格迁移、服装/发型调整。
推荐参数:Weight 0.7-1.2,Steps 20+。。
协同推荐:结合ControlNet和Embedding提升精度。
3.Motion(动态模型)
技术原理:优化帧间连贯性,增强时序一致性。
应用场景:短视频生成、动态效果(如飘动头发)。
推荐参数:FPS 12,Motion Scale 1.5。。
协同推荐:配合AnimateDiff和Depth Control使用。
4.Detection(对象检测模型)
技术原理:基于YOLO等算法的对象检测模块,自动识别图像元素。
应用场景:快速标记图像中的人物、车辆等对象,辅助批量处理。
推荐参数:Confidence 0.7,IOU 0.5;文件格式为.pt或.onnx。
协同推荐:配合Inpainting模型实现精准局部修复。
5.Embedding(概念嵌入)
技术原理:在文本编码空间嵌入自定义概念。
应用场景:生成特定角色或Logo。
推荐参数:Trigger Word + CFG 8-10。
协同推荐:与LoRA和Hypernetwork联用效果显著。
6.LyCORIS(增强版LoRA)
技术原理:支持卷积层和Transformer层的独立调整,实现更复杂的特征控制。
应用场景:精确手势生成、微调角色表情等细节。
推荐参数:Weight 0.5-0.8;文件格式为.safetensors。
协同推荐:搭配SDXL和ControlNet提升生成稳定性。
7.VAE(变分自编码器)
技术原理:优化图像解码过程,提升色彩表现和细节清晰度。
应用场景:修复模糊图像、增强画面质感。
推荐参数:Size 32;文件格式为.vae.pt。
协同推荐:所有Checkpoint模型的必备搭档。
8.Poses(3D姿势模型)
技术原理:提供3D人体骨骼绑定或姿势库,控制角色动作。
应用场景:动画制作、角色动态姿势生成。
推荐参数:OpenPose权重0.9-1.1;文件格式为.json或.safetensors。
协同推荐:配合ControlNet OpenPose实现精准骨骼映射。
9.Hypernetwork(动态权重网络)
技术原理:通过辅助网络动态生成主模型的权重偏移量。
应用场景:强化赛博朋克、蒸汽波等艺术风格。
推荐参数:Hypernet Strength 0.3-0.6;文件格式为.pt。
协同推荐:与SD 1.5和Textual Inversion联用效果更佳。
10.ControlNet(多模态控制)
技术原理:通过边缘/深度/语义分割实现精确构图控制。
应用场景:工业设计、艺术构图。
推荐参数:Control Weight 1.0-1.5。
协同推荐:搭配SDXL和Depth预处理模型。
**
**
11.Wildcards(通配符模板)
技术原理:通过随机组合预设关键词批量生成多样性内容。
应用场景:快速生成不同服装、配饰的系列图像。
推荐参数:动态替换(如color_变量);文件格式为.txt。
协同推荐:搭配Dynamic Prompts插件实现自动化流程。
12.Aesthetic Gradient(美学评分模型)
技术原理:基于美学评分引导生成方向,优化构图与艺术性。
应用场景:创作高艺术价值的插画或摄影作品。
推荐参数:Aesthetic Weight 0.5-0.7;文件格式为.pt。
协同推荐:优先选择高艺术性Checkpoint模型。
**
**
13.Upscaler(超分辨率模型)
技术原理:使用ESRGAN/SwinIR算法重建高清细节。
应用场景:修复低分辨率图像,输出4K+级画质。
推荐参数:Denoise 0.3-0.5,Scale 2;文件格式为.pth或.onnx。
协同推荐:配合Ultimate SD Upscale插件批量处理。
14.Workflows(流程预设)
技术原理:标准化生成→修复→精修流程,预设参数继承关系。
应用场景:复杂项目的工业化批量生产。
推荐参数:分阶段参数继承;文件格式为.json或.png。
协同推荐:适配ComfyUI节点系统实现可视化操作。
**
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
1.stable diffusion安装包 (全套教程文末领取哈
)
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】