PAT --- 1089.狼人杀-简单版 (20 分)

1089 狼人杀-简单版 (20 分)

以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?

本题是这个问题的升级版:已知 NNN 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?

输入格式:

输入在第一行中给出一个正整数 NNN5≤N≤1005 \le N \le 1005N100)。随后 NNN 行,第 iii 行给出第 iii 号玩家说的话(1≤i≤N1 \le i \le N1iN),即一个玩家编号,用正号表示好人,负号表示狼人。

输出格式:

如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],...,a[M]A = { a[1], ..., a[M] }A=a[1],...,a[M]B=b[1],...,b[M]B = { b[1], ..., b[M] }B=b[1],...,b[M],若存在 0≤k<M0 \le k < M0k<M 使得 a[i]=b[i]a[i]=b[i]a[i]=b[i]i≤ki \le kik),且 a[k+1]<b[k+1]a[k+1]<b[k+1]a[k+1]<b[k+1],则称序列 AAA 小于序列 BBB。若无解则输出 No Solution

输入样例 1:

5
-2
+3
-4
+5
+4

输出样例 1:

1 4

输入样例 2:

6
+6
+3
+1
-5
-2
+4

输出样例 2(解不唯一):

1 5

输入样例 3:

5
-2
-3
-4
-5
-1

输出样例 3:

No Solution

思路

可能是我不会狼人杀的缘故吧,这个题看了很久,最后参考柳神代码写出来的。。。
分析:每个人说的数字保存在v数组中,i从1~n、j从i+1~n遍历,分别假设i和j是狼人,a数组表示该人是狼人还是好人,等于1表示是好人,等于-1表示是狼人。k从1~n分别判断k所说的话是真是假,k说的话和真实情况不同(即v[k] * a[abs(v[k])] < 0)则表示k在说谎,则将k放在lie数组中;遍历完成后判断lie数组,如果说谎人数等于2并且这两个说谎的人一个是好人一个是狼人(即a[lie[0]] + a[lie[1]] == 0)表示满足题意,此时输出i和j并return,否则最后的时候输出No Solution~

代码

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

int main()
{
	int n, m;
	cin >> n;
	vector<int> v(n + 1);
	for (int i = 1; i <= n; i++)
		cin >> v[i];
	for (int i = 1; i <= n; i++) {
		for (int j = i + 1; j <= n; j++) {
			vector<int> lie, a(n + 1, 1);
			a[i] = a[j] = -1;
			for (int k = 1; k <= n; k++) {
				if (v[k] * a[abs(v[k])] < 0)
					lie.push_back(k);
			}
			if (lie.size() == 2 && a[lie[0]] + a[lie[1]] == 0) {
				cout << i << " " << j;
				return 0;
			}
		}
	}
	cout << "No Solution";
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值