深度学习理论——目标函数(损失函数)&正则化&交叉验证

本文介绍了深度学习中目标函数的概念,包括分类问题中的交叉熵损失函数和回归问题中的l1、l2目标函数。接着讨论了正则化,如l1、l2正则化及其在防止过拟合中的作用,以及dropout技术。最后,简述了交叉验证在提高模型泛化能力上的重要性。
摘要由CSDN通过智能技术生成

大家好,继续理论学习,网络的设置接近了尾声,本次学习目标函数和正则化。

1.目标函数

(1)分类问题中的目标函数

这类问题中最常用的就是交叉熵函数了,即使用了softmax的损失函数。假设共有N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi,hi为其网络对应的最终输出,C为分类任务的类别数。有了如上定义,其形式可写为:

其中前面的1/N是一个常数,加不加都一样,后面的累加部分我还看到一个版本是再乘上真实值y。

(2)回归问题中的目标函数

在分类任务中,最后的样本真实标记实际上是一条一维向量,仅在yi处标记为1其余地方均为0。但回归问题的输出就不一样了,也是一条一维向量,但其每一个元素都为实数,而不是仅为二值。

首先介绍残差的概念:即xi真实值和预测值的差


则回归常用的l1,l2目标函数定义如下:(M为标记向量总维度)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值