大家好,继续理论学习,网络的设置接近了尾声,本次学习目标函数和正则化。
1.目标函数
(1)分类问题中的目标函数
这类问题中最常用的就是交叉熵函数了,即使用了softmax的损失函数。假设共有N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi,hi为其网络对应的最终输出,C为分类任务的类别数。有了如上定义,其形式可写为:
其中前面的1/N是一个常数,加不加都一样,后面的累加部分我还看到一个版本是再乘上真实值y。
(2)回归问题中的目标函数
在分类任务中,最后的样本真实标记实际上是一条一维向量,仅在yi处标记为1其余地方均为0。但回归问题的输出就不一样了,也是一条一维向量,但其每一个元素都为实数,而不是仅为二值。
首先介绍残差的概念:即xi真实值和预测值的差
则回归常用的l1,l2目标函数定义如下:(M为标记向量总维度)