1049: [HAOI2006]数字序列

题目链接

题目大意:把整数序列A变成一个单调严格上升的序列。要求改变的数尽量少,在满足此前提下改变幅度最小

题解:
第一问:补集转换,题目转换为:最大化不修改的点。
对于任意的 i,j(j<i) ,若可以通过修改中间的 ji+1 个数来使得 [j,i] 满足要求,必要条件是 a[i]a[j]>=ij ,不妨设b[i]=a[i]-i,则条件变为b[i]>=b[j],求出b[i]的最长不降子序列长度len, ans=nlen

第二问:

Orz ydc题解

结论:如果从j转移到i的话,那么中间一定有一个k(k>=j&&k < <script type="math/tex" id="MathJax-Element-205"><</script>i),使得
的高度都是a[j],k+1~i的高度都是i,且这样的花费是最优的
在枚举f[i]中,第i个数是保证不改的,所以第n个数不管怎样都不会被改。所以我们要在第一问前就在序列尾加一个无穷大的元素。
在序列的前后各插入一个数,这样好写一些

我的收获:强啊

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

const int M=35005;
#define LNF 1e60
#define INF 0x3f3f3f3f

int n,ret,t;
int a[M],f[M],k[M],head[M];
long long g[M],sum1[M],sum2[M];

struct edge{int to,nex;}e[M*10];

void add(int u,int v){e[t].to=v,e[t].nex=head[u],head[u]=t++;}

void lis()
{
    memset(k,0x3f,sizeof(k));
    for(int i=1,pos;i<=n;i++)
        pos=upper_bound(k+1,k+n+1,a[i])-k,k[f[i]=pos]=a[i],ret=max(ret,f[i]);
    cout<<n-ret<<endl;
}

void solve()
{
    t=0;memset(head,-1,sizeof(head));
    for(int i=n;i>=0;i--) add(f[i],i),g[i]=LNF;
    g[0]=0;a[0]=-INF; 
    for(int i=1;i<=n;i++)
        for(int j=head[f[i]-1];j!=-1;j=e[j].nex)
          {
                int v=e[j].to;
                if(v>i) break;
                if(a[v]>a[i]) continue;
                for(int k=v;k<=i;k++) sum1[k]=abs(a[k]-a[v]),sum2[k]=abs(a[k]-a[i]);
                for(int k=v+1;k<=i;k++) sum1[k]+=sum1[k-1],sum2[k]+=sum2[k-1];
                for(int k=v;k<i;k++) g[i]=min(g[i],g[v]+sum1[k]-sum1[v]+sum2[i]-sum2[k]);
          }
    cout<<g[n]<<endl;
}

void work()
{
    lis();
    solve();
}

void init()
{
    cin>>n;
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]),a[i]-=i;
    a[++n]=INF-1;//要比INF小 
}

int main()
{
    init();
    work();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值