题目大意:给定一个无向图,每个点和每条边都有权值,多次询问从点v开始只能经过边权小于等于x的点中权值第k大
题解:离线,把边和询问都按照边权从小到大排序,动态加边
对每个点维护一颗权值线段树,每次计算答案之前将边权小于等于限制的边两端的连通块(并查集维护)的权值线段树合并,然后在权值线段树上查询即可
因为用了权值线段树,要离散化h
我的收获:线段树合并吼啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
#define M 100005
#define MM 500005
int n,m,q,cnt;
int h[M],z[M],f[M],root[M],ans[MM];
int tl[MM*10],tr[MM*10],sum[MM*10];
struct data{int x,y,w,ans,id,f;}a[MM*2];
bool operator<(data a,data b){return a.w==b.w?a.f<b.f:a.w<b.w;}
inline int find(int x){return x==f[x]?x:f[x]=find(f[x]);}
inline void pushup(int x){sum[x]=sum[tl[x]]+sum[tr[x]];}
void build(int k,int l,int r,int &x)
{
if(!x) x=++cnt;sum[x]=1;//动态开点
if(l==r) return ;
int m=(l+r)>>1;
if(k<=m) build(k,l,m,tl[x]);
else build(k,m+1,r,tr[x]);
}
int query(int w,int l,int r,int x)//求排名为w的值,类似平衡树
{
if(l==r) return l;
int m=(l+r)>>1;
if(sum[tl[x]]>=w) return query(w,l,m,tl[x]);
else return query(w-sum[tl[x]],m+1,r,tr[x]);
}
int merge(int x,int y)
{
if(!x||!y) return x+y;
sum[x]+=sum[y];
tl[x]=merge(tl[x],tl[y]);
tr[x]=merge(tr[x],tr[y]);
return x;
}
void solve()
{
for(int i=1;i<=n;i++) build(h[i],1,n,root[i]);
for(int i=1;i<=m+q;i++)
if(!a[i].f){
int fx=find(a[i].x),fy=find(a[i].y);
if(fx!=fy) f[fx]=fy,root[fy]=merge(root[fx],root[fy]);
}
else{
int fx=find(a[i].x);
if(sum[root[fx]]<a[i].y) ans[a[i].id]=-1;//tan90°
else ans[a[i].id]=z[query(sum[root[fx]]-a[i].y+1,1,n,root[fx])];//把第k大转化为第sum-k+1小,离散化了要还原
}
}
void work()
{
solve();
for(int i=1;i<=q;i++) printf("%d\n",ans[i]);
}
void init()
{
cin>>n>>m>>q;
for(int i=1;i<=n;i++) scanf("%d",&h[i]),z[i]=h[i],f[i]=i;
sort(z+1,z+n+1);
for(int i=1;i<=n;i++) h[i]=lower_bound(z+1,z+n+1,h[i])-z;
for(int i=1;i<=m;i++) a[i].f=0,scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
for(int i=m+1;i<=m+q;i++) a[i].f=1,a[i].id=i-m,scanf("%d%d%d",&a[i].x,&a[i].w,&a[i].y);
sort(a+1,a+m+q+1);
}
int main()
{
init();
work();
return 0;
}