1965: [Ahoi2005]SHUFFLE 洗牌

题目链接

题目大意:求M次洗牌后第L张大小

题解:观(打)察(表)后发现,每次洗牌后编号为 x 的牌会在2x mod n+1的位置

    x2mL(mod n+1)
 x2m+(n+1)y=L
可用扩展欧几里得解

解2

再次观察,2^m和n+1互质(n为偶数),只需要求出2在模n+1意义下的逆元,设逆元为z, 2z+(n+1)y=1,zn/2+1, ,答案即为

(n/2+1)mL mod(n+1) ,直接快速幂求解

我的收获:强啊

#include <cstdio>
#include <iostream>
using namespace std;

#define ll long long

ll n,m,l;

ll fpow(ll a,int b,int P){
    ll c=1;a%=P;
    for(;b;b>>=1,a=(a*a)%P)
    if(b&1) c=(c*a)%P;
    return c;
}

void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
    if(!b) d=a,x=1,y=0;
    else exgcd(b,a%b,d,y,x),y-=x*(a/b);
}

void init(){
    scanf("%lld%lld%lld",&n,&m,&l);n++;
    ll a=fpow(2,m,n),b=n,x,y,g;
    exgcd(a,b,g,x,y);
    x=x*l%n;while(x<=0) x+=n;
    printf("%lld\n",x);
}

int main()
{
    init();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值