题目大意:求M次洗牌后第L张大小
题解:观(打)察(表)后发现,每次洗牌后编号为
x
的牌会在
x∗2m≡L(mod n+1)
∴ x∗2m+(n+1)y=L
可用扩展欧几里得解
解2
再次观察,2^m和n+1互质(n为偶数),只需要求出2在模n+1意义下的逆元,设逆元为z, 解2∗z+(n+1)∗y=1,z的最小正整数解为n/2+1,移项 ,答案即为
(n/2+1)m∗L mod(n+1) ,直接快速幂求解
我的收获:强啊
#include <cstdio>
#include <iostream>
using namespace std;
#define ll long long
ll n,m,l;
ll fpow(ll a,int b,int P){
ll c=1;a%=P;
for(;b;b>>=1,a=(a*a)%P)
if(b&1) c=(c*a)%P;
return c;
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b) d=a,x=1,y=0;
else exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
void init(){
scanf("%lld%lld%lld",&n,&m,&l);n++;
ll a=fpow(2,m,n),b=n,x,y,g;
exgcd(a,b,g,x,y);
x=x*l%n;while(x<=0) x+=n;
printf("%lld\n",x);
}
int main()
{
init();
return 0;
}